|
|
|
from ragatouille import RAGPretrainedModel |
|
import subprocess |
|
import json |
|
import spaces |
|
import firebase_admin |
|
from firebase_admin import credentials, firestore |
|
import logging |
|
from pathlib import Path |
|
from time import perf_counter |
|
from datetime import datetime |
|
import gradio as gr |
|
from jinja2 import Environment, FileSystemLoader |
|
import numpy as np |
|
from sentence_transformers import CrossEncoder |
|
from huggingface_hub import InferenceClient |
|
from os import getenv |
|
|
|
from backend.query_llm import generate_hf, generate_openai |
|
from backend.semantic_search import table, retriever |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
VECTOR_COLUMN_NAME = "vector" |
|
TEXT_COLUMN_NAME = "text" |
|
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") |
|
proj_dir = Path(__file__).parent |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN) |
|
|
|
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) |
|
|
|
|
|
template = env.get_template('template.j2') |
|
template_html = env.get_template('template_html.j2') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples = ['Tabulate the difference between veins and arteries','What are defects in Human eye?', |
|
'Frame 5 short questions and 5 MCQ on Chapter 2 ','Suggest creative and engaging ideas to teach students on Chapter on Metals and Non Metals ' |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_text(history, text): |
|
history = [] if history is None else history |
|
history = history + [(text, None)] |
|
return history, gr.Textbox(value="", interactive=False) |
|
|
|
|
|
def bot(history, cross_encoder): |
|
top_rerank = 15 |
|
top_k_rank = 10 |
|
query = history[-1][0] |
|
|
|
if not query: |
|
gr.Warning("Please submit a non-empty string as a prompt") |
|
raise ValueError("Empty string was submitted") |
|
|
|
logger.warning('Retrieving documents...') |
|
|
|
|
|
if cross_encoder=='(HIGH ACCURATE) ColBERT': |
|
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') |
|
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") |
|
RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') |
|
documents_full=RAG_db.search(query,k=top_k_rank) |
|
|
|
documents=[item['content'] for item in documents_full] |
|
|
|
prompt = template.render(documents=documents, query=query) |
|
prompt_html = template_html.render(documents=documents, query=query) |
|
|
|
generate_fn = generate_hf |
|
|
|
history[-1][1] = "" |
|
for character in generate_fn(prompt, history[:-1]): |
|
history[-1][1] = character |
|
print('Final history is ',history) |
|
yield history, prompt_html |
|
|
|
else: |
|
|
|
document_start = perf_counter() |
|
|
|
query_vec = retriever.encode(query) |
|
logger.warning(f'Finished query vec') |
|
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) |
|
|
|
|
|
|
|
logger.warning(f'Finished search') |
|
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() |
|
documents = [doc[TEXT_COLUMN_NAME] for doc in documents] |
|
logger.warning(f'start cross encoder {len(documents)}') |
|
|
|
query_doc_pair = [[query, doc] for doc in documents] |
|
if cross_encoder=='(FAST) MiniLM-L6v2' : |
|
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') |
|
elif cross_encoder=='(ACCURATE) BGE reranker': |
|
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') |
|
|
|
cross_scores = cross_encoder1.predict(query_doc_pair) |
|
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) |
|
logger.warning(f'Finished cross encoder {len(documents)}') |
|
|
|
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] |
|
logger.warning(f'num documents {len(documents)}') |
|
|
|
document_time = perf_counter() - document_start |
|
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') |
|
|
|
|
|
prompt = template.render(documents=documents, query=query) |
|
prompt_html = template_html.render(documents=documents, query=query) |
|
|
|
generate_fn = generate_hf |
|
|
|
history[-1][1] = "" |
|
for character in generate_fn(prompt, history[:-1]): |
|
history[-1][1] = character |
|
print('Final history is ',history) |
|
yield history, prompt_html |
|
|
|
|
|
def system_instructions(question_difficulty, topic,documents_str): |
|
return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" |
|
|
|
|
|
|
|
with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: |
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.HTML(value="""<div style="color: #FF4500;"><h1>CHEERFULL CBSE-</h1> <h1><span style="color: #008000">AI Assisted Fun Learning</span></h1> |
|
</div>""", elem_id='heading') |
|
|
|
gr.HTML(value=f""" |
|
<p style="font-family: sans-serif; font-size: 16px;"> |
|
A free Artificial Intelligence Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry. |
|
</p> |
|
""", elem_id='Sub-heading') |
|
|
|
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by K M Ramyasri , TGT,GHS.SUTHUKENY . Suggestions may be sent to <a href="mailto:ramyadevi1607@yahoo.com" style="color: #00008B; font-style: italic;">ramyadevi1607@yahoo.com</a>.</p>""", elem_id='Sub-heading1 ') |
|
|
|
with gr.Column(scale=3): |
|
gr.Image(value='logo.png',height=200,width=200) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chatbot = gr.Chatbot( |
|
[], |
|
elem_id="chatbot", |
|
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', |
|
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), |
|
bubble_full_width=False, |
|
show_copy_button=True, |
|
show_share_button=True, |
|
) |
|
|
|
with gr.Row(): |
|
txt = gr.Textbox( |
|
scale=3, |
|
show_label=False, |
|
placeholder="Enter text and press enter", |
|
container=False, |
|
) |
|
txt_btn = gr.Button(value="Submit text", scale=1) |
|
|
|
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") |
|
|
|
prompt_html = gr.HTML() |
|
|
|
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( |
|
bot, [chatbot, cross_encoder], [chatbot, prompt_html]) |
|
|
|
|
|
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) |
|
|
|
|
|
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( |
|
bot, [chatbot, cross_encoder], [chatbot, prompt_html]) |
|
|
|
|
|
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) |
|
|
|
|
|
gr.Examples(examples, txt) |
|
|
|
|
|
RAG_db=gr.State() |
|
|
|
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: |
|
def load_model(): |
|
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") |
|
RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') |
|
return 'Ready to Go!!' |
|
with gr.Column(scale=4): |
|
gr.HTML(""" |
|
<center> |
|
<h1><span style="color: purple;">AI NANBAN</span> - CBSE Class Quiz Maker</h1> |
|
<h2>AI-powered Learning Game</h2> |
|
<i>⚠️ Students create quiz from any topic /CBSE Chapter ! ⚠️</i> |
|
</center> |
|
""") |
|
|
|
with gr.Column(scale=2): |
|
load_btn = gr.Button("Click to Load!🚀") |
|
load_text=gr.Textbox() |
|
load_btn.click(load_model,[],load_text) |
|
|
|
|
|
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic from CBSE notes") |
|
|
|
with gr.Row(): |
|
radio = gr.Radio( |
|
["easy", "average", "hard"], label="How difficult should the quiz be?" |
|
) |
|
|
|
|
|
generate_quiz_btn = gr.Button("Generate Quiz!🚀") |
|
quiz_msg=gr.Textbox() |
|
|
|
question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( |
|
visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( |
|
visible=False), gr.Radio(visible=False), gr.Radio(visible=False)] |
|
|
|
print(question_radios) |
|
|
|
@spaces.GPU |
|
@generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz") |
|
def generate_quiz(question_difficulty, topic): |
|
top_k_rank=10 |
|
RAG_db_=RAG_db.value |
|
documents_full=RAG_db_.search(topic,k=top_k_rank) |
|
|
|
documents=[item['content'] for item in documents_full] |
|
document_summaries = [f"[DOCUMENT {i+1}]: {summary}" for i, summary in enumerate(documents)] |
|
documents_str='\n'.join(document_summaries) |
|
formatted_prompt = system_instructions( |
|
question_difficulty, topic,documents_str) |
|
print(formatted_prompt) |
|
pre_prompt = [ |
|
{"role": "system", "content": formatted_prompt} |
|
] |
|
|
|
generate_kwargs = dict( |
|
temperature=0.2, |
|
max_new_tokens=4000, |
|
top_p=0.95, |
|
repetition_penalty=1.0, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
question_radio_list = [] |
|
count=0 |
|
while count<=3: |
|
try: |
|
response = client.text_generation( |
|
formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, |
|
) |
|
output_json = json.loads(f"{response}") |
|
|
|
|
|
print(response) |
|
print('output json', output_json) |
|
|
|
global quiz_data |
|
|
|
quiz_data = output_json |
|
|
|
|
|
|
|
for question_num in range(1, 11): |
|
question_key = f"Q{question_num}" |
|
answer_key = f"A{question_num}" |
|
|
|
question = quiz_data.get(question_key) |
|
answer = quiz_data.get(quiz_data.get(answer_key)) |
|
|
|
if not question or not answer: |
|
continue |
|
|
|
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] |
|
choice_list = [] |
|
for choice_key in choice_keys: |
|
choice = quiz_data.get(choice_key, "Choice not found") |
|
choice_list.append(f"{choice}") |
|
|
|
radio = gr.Radio(choices=choice_list, label=question, |
|
visible=True, interactive=True) |
|
|
|
question_radio_list.append(radio) |
|
if len(question_radio_list)==10: |
|
break |
|
else: |
|
print('10 questions not generated . So trying again!') |
|
count+=1 |
|
continue |
|
except Exception as e: |
|
count+=1 |
|
print(f"Exception occurred: {e}") |
|
if count==3: |
|
print('Retry exhausted') |
|
gr.Warning('Sorry. Pls try with another topic !') |
|
else: |
|
print(f"Trying again..{count} time...please wait") |
|
continue |
|
|
|
print('Question radio list ' , question_radio_list) |
|
|
|
return ['Quiz Generated!']+ question_radio_list |
|
|
|
check_button = gr.Button("Check Score") |
|
|
|
score_textbox = gr.Markdown() |
|
|
|
@check_button.click(inputs=question_radios, outputs=score_textbox) |
|
def compare_answers(*user_answers): |
|
user_anwser_list = [] |
|
user_anwser_list = user_answers |
|
|
|
answers_list = [] |
|
|
|
for question_num in range(1, 20): |
|
answer_key = f"A{question_num}" |
|
answer = quiz_data.get(quiz_data.get(answer_key)) |
|
if not answer: |
|
break |
|
answers_list.append(answer) |
|
|
|
score = 0 |
|
|
|
for item in user_anwser_list: |
|
if item in answers_list: |
|
score += 1 |
|
if score>5: |
|
message = f"### Good ! You got {score} over 10!" |
|
elif score>7: |
|
message = f"### Excellent ! You got {score} over 10!" |
|
else: |
|
message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !" |
|
|
|
return message |
|
|
|
|
|
|
|
demo = gr.TabbedInterface([CHATBOT,QUIZBOT], ["AI ChatBot", "AI Nanban-Quizbot"]) |
|
|
|
demo.queue() |
|
demo.launch(debug=True) |
|
|