10_New_science / app.py
RAMYASRI-39's picture
Upload 27 files
b5144da verified
import gradio as gr
from pathlib import Path
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
import pandas as pd
from pydantic import BaseModel, Field
from phi.agent import Agent
from phi.model.groq import Groq
import os
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
logger.error("GROQ_API_KEY not found.")
else:
os.environ["GROQ_API_KEY"] = api_key
# Pydantic Model for Quiz Structure
class QuizItem(BaseModel):
question: str = Field(..., description="The quiz question")
choices: list[str] = Field(..., description="List of 4 multiple-choice options")
correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")
class QuizOutput(BaseModel):
items: list[QuizItem] = Field(..., description="List of 10 quiz items")
# Initialize Agents
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)
quiz_generator = Agent(
name="Quiz Generator",
role="Generates structured quiz questions and answers",
instructions=[
"Create 10 questions with 4 choices each based on the provided topic and documents.",
"Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
"Ensure questions are derived only from the provided documents.",
"Return the output in a structured format using the QuizOutput Pydantic model.",
"Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
],
model=Groq(id="llama3-70b-8192", api_key=api_key),
response_model=QuizOutput,
markdown=True
)
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()
# Calling functions from backend (assuming they exist)
from backend.semantic_search import table, retriever
def generate_quiz_data(question_difficulty, topic, documents_str):
prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
try:
response = quiz_generator.run(prompt)
return response.content
except Exception as e:
logger.error(f"Failed to generate quiz: {e}")
return None
def json_to_excel(quiz_data):
data = []
gr.Warning('Generating Shareable file link..', duration=30)
for i, item in enumerate(quiz_data.items, 1):
data.append([
item.question,
"Multiple Choice",
item.choices[0],
item.choices[1],
item.choices[2],
item.choices[3],
'', # Option 5 (empty)
item.correct_answer.replace('C', ''),
30,
''
])
df = pd.DataFrame(data, columns=[
"Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
])
temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
return temp_file.name
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
with gr.Row():
with gr.Column(scale=2):
gr.Image(value='logo.png', height=200, width=200)
with gr.Column(scale=6):
gr.HTML("""
<center>
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
<i>⚠️ Students can create quiz from any topic from 9th Science and evaluate themselves! ⚠️</i>
</center>
""")
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science CBSE")
with gr.Row():
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings") # Removed ColBERT option
generate_quiz_btn = gr.Button("Generate Quiz!πŸš€")
quiz_msg = gr.Textbox(label="Status", interactive=False)
question_display = gr.HTML(visible=False)
download_excel = gr.File(label="Download Excel")
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg, question_display, download_excel])
def generate_quiz(question_difficulty, topic, cross_encoder):
top_k_rank = 10
documents = []
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
document_start = perf_counter()
query_vec = retriever.encode(topic)
documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
if cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
query_doc_pair = [[topic, doc] for doc in documents]
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
documents_str = '\n'.join(documents)
quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
if not quiz_data or not quiz_data.items:
return ["Error: Failed to generate quiz.", gr.HTML(visible=False), None]
excel_file = json_to_excel(quiz_data)
html_content = "<div>" + "".join(f"<h3>{i}. {item.question}</h3><p>{'<br>'.join(item.choices)}</p>" for i, item in enumerate(quiz_data.items[:10], 1)) + "</div>"
return ["Quiz Generated!", gr.HTML(value=html_content, visible=True), excel_file]
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_display, outputs=score_textbox)
def compare_answers(html_content):
if not quiz_data or not quiz_data.items:
return "Please generate a quiz first."
# Placeholder for user answers (adjust based on actual UI implementation)
user_answers = [] # Implement parsing logic if using radio inputs
correct_answers = [item.correct_answer for item in quiz_data.items[:10]]
score = sum(1 for u, c in zip(user_answers, correct_answers) if u == c)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
if __name__ == "__main__":
QUIZBOT.queue().launch(debug=True)
# # Importing libraries
# import pandas as pd
# import json
# import gradio as gr
# from pathlib import Path
# from ragatouille import RAGPretrainedModel
# from gradio_client import Client
# from tempfile import NamedTemporaryFile
# from sentence_transformers import CrossEncoder
# import numpy as np
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# #calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
# from backend.semantic_search import table, retriever
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path.cwd()
# # Set up logging
# import logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Replace Mixtral client with Qwen Client
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")
# def system_instructions(question_difficulty, topic, documents_str):
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
# # Ragatouille database for Colbert ie highly accurate mode
# RAG_db = gr.State()
# quiz_data = None
# #defining a function to convert json file to excel file
# def json_to_excel(output_json):
# # Initialize list for DataFrame
# data = []
# gr.Warning('Generating Shareable file link..', duration=30)
# for i in range(1, 11): # Assuming there are 10 questions
# question_key = f"Q{i}"
# answer_key = f"A{i}"
# question = output_json.get(question_key, '')
# correct_answer_key = output_json.get(answer_key, '')
# #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
# correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
# # Extract options
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
# options = [output_json.get(key, '') for key in option_keys]
# # Add data row
# data.append([
# question, # Question Text
# "Multiple Choice", # Question Type
# options[0], # Option 1
# options[1], # Option 2
# options[2] if len(options) > 2 else '', # Option 3
# options[3] if len(options) > 3 else '', # Option 4
# options[4] if len(options) > 4 else '', # Option 5
# correct_answer, # Correct Answer
# 30, # Time in seconds
# '' # Image Link
# ])
# # Create DataFrame
# df = pd.DataFrame(data, columns=[
# "Question Text",
# "Question Type",
# "Option 1",
# "Option 2",
# "Option 3",
# "Option 4",
# "Option 5",
# "Correct Answer",
# "Time in seconds",
# "Image Link"
# ])
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
# df.to_excel(temp_file.name, index=False)
# return temp_file.name
# # Define a colorful theme
# colorful_theme = gr.themes.Default(
# primary_hue="cyan", # Set a bright cyan as primary color
# secondary_hue="yellow", # Set a bright magenta as secondary color
# neutral_hue="purple" # Optionally set a neutral color
# )
# #gradio app creation for a user interface
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
# # Create a single row for the HTML and Image
# with gr.Row():
# with gr.Column(scale=2):
# gr.Image(value='logo.png', height=200, width=200)
# with gr.Column(scale=6):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
# <h2>Generative AI-powered Capacity building for STUDENTS</h2>
# <i>⚠️ Students can create quiz from any topic from 10 science and evaluate themselves! ⚠️</i>
# </center>
# """)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
# with gr.Row():
# difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
# model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
# value='(ACCURATE) BGE reranker', label="Embeddings",
# info="First query to ColBERT may take a little time")
# generate_quiz_btn = gr.Button("Generate Quiz!πŸš€")
# quiz_msg = gr.Textbox()
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
# @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
# def generate_quiz(question_difficulty, topic, cross_encoder):
# top_k_rank = 10
# documents = []
# gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
# gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# documents_full = RAG_db.value.search(topic, k=top_k_rank)
# documents = [item['content'] for item in documents_full]
# else:
# document_start = perf_counter()
# query_vec = retriever.encode(topic)
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# query_doc_pair = [[topic, doc] for doc in documents]
# # if cross_encoder == '(FAST) MiniLM-L6v2':
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# if cross_encoder == '(ACCURATE) BGE reranker':
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
# cross_scores = cross_encoder1.predict(query_doc_pair)
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# #creating a text prompt to Qwen model combining the documents and system instruction
# formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
# print(' Formatted Prompt : ' ,formatted_prompt)
# try:
# response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
# response1 = response[1][0][1]
# # Extract JSON
# start_index = response1.find('{')
# end_index = response1.rfind('}')
# cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
# print('Cleaned Response :',cleaned_response)
# output_json = json.loads(cleaned_response)
# # Assign the extracted JSON to quiz_data for use in the comparison function
# global quiz_data
# quiz_data = output_json
# # Generate the Excel file
# excel_file = json_to_excel(output_json)
# #Create a Quiz display in app
# question_radio_list = []
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = output_json.get(question_key)
# answer = output_json.get(output_json.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# question_radio_list.append(radio)
# return ['Quiz Generated!'] + question_radio_list + [excel_file]
# except json.JSONDecodeError as e:
# print(f"Failed to decode JSON: {e}")
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_answer_list = list(user_answers)
# answers_list = []
# for question_num in range(1, 11):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = sum(1 for item in user_answer_list if item in answers_list)
# if score > 7:
# message = f"### Excellent! You got {score} out of 10!"
# elif score > 5:
# message = f"### Good! You got {score} out of 10!"
# else:
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)