Spaces:
Sleeping
Sleeping
| from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
| import datetime | |
| import requests | |
| import pytz | |
| import yaml | |
| from tools.final_answer import FinalAnswerTool | |
| from transformers import pipeline # For local NLP analysis | |
| from Gradio_UI import GradioUI | |
| # Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
| # Tools and model already present in the environment | |
| search_tool = DuckDuckGoSearchTool() | |
| # Set up a local NLP pipeline with Hugging Face for text analysis | |
| sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
| topic_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
| def my_custom_tool(x_username: str, days_in_past:int)-> str: #it's import to specify the return type | |
| #Keep this format for the description / args / args description but feel free to modify the tool | |
| """A tool that creates a fictional psychological portrait based on an X user's recent activity using Hugging Face tools. | |
| Args: | |
| x_username: The X username to analyze (e.g., 'elonmusk') | |
| days_in_past: Number of days in the past to analyze (max 30) | |
| """ | |
| # Check if the number of days is within acceptable range | |
| if days_in_past < 1 or days_in_past > 30: | |
| return "Please choose a number of days between 1 and 30." | |
| # Calculate the time range | |
| current_date = datetime.datetime.now() | |
| start_date = current_date - datetime.timedelta(days=days_in_past) | |
| date_range = f"from {start_date.strftime('%Y-%m-%d')} to {current_date.strftime('%Y-%m-%d')}" | |
| # Analyze available data using adapted tools | |
| posts_data = analyze_x_activity_with_hf(x_username, days_in_past) | |
| if not posts_data or not posts_data.get("content"): | |
| return f"No recent activity data found for @{x_username} in the last {days_in_past} days." | |
| # Generate the psychological portrait | |
| portrait = craft_psychological_portrait(x_username, posts_data, date_range) | |
| return portrait | |
| def analyze_x_activity_with_hf(username: str, days: int) -> dict: | |
| """Use Hugging Face-compatible tools to analyze X activity.""" | |
| # Search via DuckDuckGo to simulate posts (no direct X access) | |
| query = f"site:x.com {username} -inurl:(signup | login)" | |
| try: | |
| search_results = search_tool(query) | |
| content = " ".join([result["snippet"] for result in search_results[:5] if result.get("snippet")]) | |
| except Exception: | |
| content = f"Recent activity by {username}" # Fallback if search fails | |
| # Return empty dict if no content is found | |
| if not content: | |
| return {} | |
| # Analyze tone with DistilBERT | |
| sentiment = sentiment_analyzer(content[:512])[0] # Limit to 512 tokens | |
| tone = "positive" if sentiment["label"] == "POSITIVE" else "negative" if sentiment["label"] == "NEGATIVE" else "neutral" | |
| # Extract themes with zero-shot classification | |
| candidate_labels = ["tech", "politics", "humor", "science", "personal", "nature","philosophy"] | |
| theme_result = topic_classifier(content[:512], candidate_labels, multi_label=False) | |
| top_themes = [label for label, score in zip(theme_result["labels"], theme_result["scores"]) if score > 0.5][:2] | |
| if not top_themes: | |
| top_themes = [theme_result["labels"][0]] # Take the most probable if nothing above 0.5 | |
| # Count words | |
| word_count = len(content.split()) | |
| return { | |
| "content": content, | |
| "tone": tone, | |
| "themes": top_themes, | |
| "word_count": word_count | |
| } | |
| def craft_psychological_portrait(username: str, posts_data: dict, date_range: str) -> str: | |
| """Helper function to craft a fictional psychological portrait.""" | |
| tone = posts_data["tone"] | |
| themes = " and ".join(posts_data["themes"]) | |
| word_count = posts_data["word_count"] | |
| # Generate a creative description based on tone | |
| if tone == "positive": | |
| intro = f"@{username}, over {date_range}, emerges as a radiant soul, gazing at the world with unyielding hope." | |
| trait = f"Your words weave {themes} into a tapestry of possibility, each of your {word_count} words a spark of light." | |
| elif tone == "negative": | |
| intro = f"@{username}, across {date_range}, walks a quiet path, shadowed by gentle sorrow." | |
| trait = f"In {themes}, your {word_count} words murmur like rain, painting a world both tender and lost." | |
| else: # neutral or other | |
| intro = f"@{username}, within {date_range}, stands as an explorer of the unknown, eyes wide with wonder." | |
| trait = f"Your {word_count} words chase {themes}, each a question unfurling toward the infinite." | |
| return f"{intro} {trait}" | |
| def get_current_time_in_timezone(timezone: str) -> str: | |
| """A tool that fetches the current local time in a specified timezone. | |
| Args: | |
| timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
| """ | |
| try: | |
| # Create timezone object | |
| tz = pytz.timezone(timezone) | |
| # Get current time in that timezone | |
| local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
| return f"The current local time in {timezone} is: {local_time}" | |
| except Exception as e: | |
| return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
| final_answer = FinalAnswerTool() | |
| # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
| # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
| model = HfApiModel( | |
| max_tokens=2096, | |
| temperature=0.5, | |
| model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
| custom_role_conversions=None, | |
| ) | |
| # Import tool from Hub | |
| image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
| with open("prompts.yaml", 'r') as stream: | |
| prompt_templates = yaml.safe_load(stream) | |
| agent = CodeAgent( | |
| model=model, | |
| tools=[final_answer,my_custom_tool, search_tool], # Add compatible HF tools | |
| max_steps=6, | |
| verbosity_level=1, | |
| grammar=None, | |
| planning_interval=None, | |
| name=None, | |
| description=None, | |
| prompt_templates=prompt_templates | |
| ) | |
| GradioUI(agent).launch() |