Quiho commited on
Commit
37b19fc
·
verified ·
1 Parent(s): 5b70e41

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -1,9 +1,8 @@
1
  # Create a text-to-image interface with options to choose schedulers, sampling steps, and no default dark theme.
2
  import gradio as gr
3
  import numpy as np
4
- import matplotlib.pyplot as plt
5
  import time
6
- import os
7
 
8
  # Define a function to generate an image based on the input text, scheduler, and sampling steps.
9
  def generate_image(text, scheduler, sampling_steps):
@@ -20,12 +19,13 @@ def generate_image(text, scheduler, sampling_steps):
20
  elif scheduler == "Euler":
21
  image = np.clip(image * (1 + sampling_steps / 20), 0, 1)
22
 
23
- # Generate a unique filename for the image
24
  timestamp = int(time.time() * 1000)
25
  filename = f"image_{timestamp}.webp"
26
 
27
- # Save the image in WEBP format
28
- plt.imsave(filename, image, format="webp")
 
29
 
30
  return filename
31
 
@@ -51,4 +51,6 @@ with gr.Blocks() as demo:
51
  if __name__ == "__main__":
52
  gr.load("models/stabilityai/stable-diffusion-3.5-large").launch()
53
  demo.launch(show_error=True)
 
 
54
 
 
1
  # Create a text-to-image interface with options to choose schedulers, sampling steps, and no default dark theme.
2
  import gradio as gr
3
  import numpy as np
4
+ from PIL import Image
5
  import time
 
6
 
7
  # Define a function to generate an image based on the input text, scheduler, and sampling steps.
8
  def generate_image(text, scheduler, sampling_steps):
 
19
  elif scheduler == "Euler":
20
  image = np.clip(image * (1 + sampling_steps / 20), 0, 1)
21
 
22
+ # Generate a unique filename for the image using the current timestamp
23
  timestamp = int(time.time() * 1000)
24
  filename = f"image_{timestamp}.webp"
25
 
26
+ # Convert the numpy array to a PIL image and save it in WEBP format
27
+ image_pil = Image.fromarray((image * 255).astype(np.uint8))
28
+ image_pil.save(filename, format="WEBP")
29
 
30
  return filename
31
 
 
51
  if __name__ == "__main__":
52
  gr.load("models/stabilityai/stable-diffusion-3.5-large").launch()
53
  demo.launch(show_error=True)
54
+
55
+
56