Spaces:
Running
Running
import { useState, useRef, useEffect } from "react"; | |
import { useVLMContext } from "../context/useVLMContext"; | |
import { drawBoundingBoxesOnCanvas } from "./BoxAnnotator"; | |
const MODES = ["File"] as const; | |
type Mode = typeof MODES[number]; | |
const EXAMPLE_VIDEO_URL = "/space/videos/1.mp4"; | |
const EXAMPLE_PROMPT = "Detect each individual animated characters in the image. The characters are moving. For each character, output a JSON array of objects with fields. Each character should have its own ([x1, y1, x2, y2]) where coordinates are in pixel values. No coordinates should be the same. This should be used to draw a box using the points around the character. This is an example of two boxes, the format of this : [x1, y1, x2, y2], [x1, y1, x2, y2]"; | |
function isImageFile(file: File) { | |
return file.type.startsWith("image/"); | |
} | |
function isVideoFile(file: File) { | |
return file.type.startsWith("video/"); | |
} | |
function denormalizeBox(box: number[], width: number, height: number) { | |
// If all values are between 0 and 1, treat as normalized | |
if (box.length === 4 && box.every(v => v >= 0 && v <= 1)) { | |
return [ | |
box[0] * width, | |
box[1] * height, | |
box[2] * width, | |
box[3] * height | |
]; | |
} | |
return box; | |
} | |
// Add this robust fallback parser near the top | |
function extractAllBoundingBoxes(output: string): { label: string, bbox_2d: number[] }[] { | |
// Try to parse as JSON first | |
try { | |
const parsed = JSON.parse(output); | |
if (Array.isArray(parsed)) { | |
const result: { label: string, bbox_2d: number[] }[] = []; | |
for (const obj of parsed) { | |
if (obj && obj.label && Array.isArray(obj.bbox_2d)) { | |
if (Array.isArray(obj.bbox_2d[0])) { | |
for (const arr of obj.bbox_2d) { | |
if (Array.isArray(arr) && arr.length === 4) { | |
result.push({ label: obj.label, bbox_2d: arr }); | |
} | |
} | |
} else if (obj.bbox_2d.length === 4) { | |
result.push({ label: obj.label, bbox_2d: obj.bbox_2d }); | |
} | |
} | |
} | |
if (result.length > 0) return result; | |
} | |
} catch (e) {} | |
// Fallback: extract all [x1, y1, x2, y2] arrays from the string | |
const boxRegex = /\[\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*\]/g; | |
const boxes: { label: string, bbox_2d: number[] }[] = []; | |
let match; | |
while ((match = boxRegex.exec(output)) !== null) { | |
const arr = [parseFloat(match[1]), parseFloat(match[2]), parseFloat(match[3]), parseFloat(match[4])]; | |
boxes.push({ label: '', bbox_2d: arr }); | |
} | |
return boxes; | |
} | |
export default function MultiSourceCaptioningView() { | |
const [mode, setMode] = useState<Mode>("File"); | |
const [videoUrl] = useState<string>(EXAMPLE_VIDEO_URL); | |
const [prompt, setPrompt] = useState<string>(EXAMPLE_PROMPT); | |
const [processing, setProcessing] = useState(false); | |
const [error, setError] = useState<string | null>(null); | |
const [uploadedFile, setUploadedFile] = useState<File | null>(null); | |
const [uploadedUrl, setUploadedUrl] = useState<string>(""); | |
const [videoProcessing, setVideoProcessing] = useState(false); | |
const [imageProcessed, setImageProcessed] = useState(false); | |
const [exampleProcessing, setExampleProcessing] = useState(false); | |
const [debugOutput, setDebugOutput] = useState<string>(""); | |
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null); | |
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null); | |
const [inferenceStatus, setInferenceStatus] = useState<string>(""); | |
const videoRef = useRef<HTMLVideoElement | null>(null); | |
const overlayVideoRef = useRef<HTMLVideoElement | null>(null); | |
const processingVideoRef = useRef<HTMLVideoElement | null>(null); | |
const canvasRef = useRef<HTMLCanvasElement | null>(null); | |
const imageRef = useRef<HTMLImageElement | null>(null); | |
const boxHistoryRef = useRef<any[]>([]); | |
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext(); | |
// Add this useEffect for overlay video synchronization | |
useEffect(() => { | |
const main = videoRef.current; | |
const overlay = overlayVideoRef.current; | |
if (!main || !overlay) return; | |
// Sync play/pause | |
const onPlay = () => { if (overlay.paused) overlay.play(); }; | |
const onPause = () => { if (!overlay.paused) overlay.pause(); }; | |
// Sync seeking and time | |
const onSeekOrTime = () => { | |
if (Math.abs(main.currentTime - overlay.currentTime) > 0.05) { | |
overlay.currentTime = main.currentTime; | |
} | |
}; | |
main.addEventListener('play', onPlay); | |
main.addEventListener('pause', onPause); | |
main.addEventListener('seeked', onSeekOrTime); | |
main.addEventListener('timeupdate', onSeekOrTime); | |
// Clean up | |
return () => { | |
main.removeEventListener('play', onPlay); | |
main.removeEventListener('pause', onPause); | |
main.removeEventListener('seeked', onSeekOrTime); | |
main.removeEventListener('timeupdate', onSeekOrTime); | |
}; | |
}, [videoRef, overlayVideoRef, uploadedUrl, videoUrl, mode]); | |
useEffect(() => { | |
if ((mode === "File") && processingVideoRef.current) { | |
processingVideoRef.current.play().catch(() => {}); | |
} | |
}, [mode, videoUrl, uploadedUrl]); | |
const processVideoFrame = async () => { | |
if (!processingVideoRef.current || !canvasRef.current) return; | |
const video = processingVideoRef.current; | |
const canvas = canvasRef.current; | |
if (video.paused || video.ended || video.videoWidth === 0) return; | |
canvas.width = video.videoWidth; | |
canvas.height = video.videoHeight; | |
const ctx = canvas.getContext("2d"); | |
if (!ctx) return; | |
ctx.drawImage(video, 0, 0, canvas.width, canvas.height); | |
await runInference(video, prompt, (output: string) => { | |
setDebugOutput(output); | |
let boxes = extractAllBoundingBoxes(output); | |
// Box persistence logic (2 seconds) | |
const now = Date.now(); | |
if (Array.isArray(boxes) && boxes.length > 0) { | |
boxHistoryRef.current = boxHistoryRef.current.filter((b: any) => now - b.timestamp < 2000); | |
boxHistoryRef.current.push(...boxes.map(box => ({ ...box, timestamp: now }))); | |
} | |
// Draw all boxes from last 2 seconds | |
const boxHistory = boxHistoryRef.current.filter((b: any) => now - b.timestamp < 2000); | |
ctx.clearRect(0, 0, canvas.width, canvas.height); | |
if (boxHistory.length > 0) { | |
const scaleX = canvas.width / video.videoWidth; | |
const scaleY = canvas.height / video.videoHeight; | |
// Fix: Draw all boxes, even if bbox_2d is an array of arrays | |
const denormalizedBoxes: any[] = []; | |
for (const b of boxHistory) { | |
if (Array.isArray(b.bbox_2d) && Array.isArray(b.bbox_2d[0])) { | |
// Multiple boxes per label | |
for (const arr of b.bbox_2d) { | |
if (Array.isArray(arr) && arr.length === 4) { | |
denormalizedBoxes.push({ | |
...b, | |
bbox_2d: denormalizeBox(arr, canvas.width, canvas.height) | |
}); | |
} | |
} | |
} else if (Array.isArray(b.bbox_2d) && b.bbox_2d.length === 4) { | |
// Single box | |
denormalizedBoxes.push({ | |
...b, | |
bbox_2d: denormalizeBox(b.bbox_2d, canvas.width, canvas.height) | |
}); | |
} | |
} | |
drawBoundingBoxesOnCanvas(ctx, denormalizedBoxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY }); | |
} | |
}); | |
}; | |
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => { | |
const file = e.target.files?.[0] || null; | |
setUploadedFile(file); | |
setUploadedUrl(file ? URL.createObjectURL(file) : ""); | |
setError(null); | |
setImageProcessed(false); | |
setVideoProcessing(false); | |
setExampleProcessing(false); | |
}; | |
// Webcam mode: process frames with setInterval | |
useEffect(() => { | |
if (mode !== "File" || !isLoaded || !uploadedFile || !isVideoFile(uploadedFile) || !videoProcessing) return; | |
let interval: ReturnType<typeof setInterval> | null = null; | |
interval = setInterval(() => { | |
processVideoFrame(); | |
}, 1000); | |
return () => { | |
if (interval) clearInterval(interval); | |
}; | |
}, [mode, isLoaded, prompt, runInference, uploadedFile, videoProcessing]); | |
// Example video mode: process frames with setInterval | |
useEffect(() => { | |
if (mode !== "File" || uploadedFile || !isLoaded || !exampleProcessing) return; | |
let interval: ReturnType<typeof setInterval> | null = null; | |
interval = setInterval(() => { | |
processVideoFrame(); | |
}, 1000); | |
return () => { | |
if (interval) clearInterval(interval); | |
}; | |
}, [mode, isLoaded, prompt, runInference, uploadedFile, exampleProcessing]); | |
// File mode: process uploaded image (only on button click) | |
const handleProcessImage = async () => { | |
if (!isLoaded || !uploadedFile || !isImageFile(uploadedFile) || !imageRef.current || !canvasRef.current) return; | |
const img = imageRef.current; | |
const canvas = canvasRef.current; | |
canvas.width = img.naturalWidth; | |
canvas.height = img.naturalHeight; | |
setCanvasDims({w:canvas.width,h:canvas.height}); | |
setVideoDims({w:img.naturalWidth,h:img.naturalHeight}); | |
const ctx = canvas.getContext("2d"); | |
if (!ctx) return; | |
ctx.drawImage(img, 0, 0, canvas.width, canvas.height); | |
setProcessing(true); | |
setError(null); | |
setInferenceStatus("Running inference..."); | |
await runInference(img, prompt, (output: string) => { | |
setDebugOutput(output); | |
setInferenceStatus("Inference complete."); | |
ctx.drawImage(img, 0, 0, canvas.width, canvas.height); | |
let boxes = extractAllBoundingBoxes(output); | |
console.log("Model output:", output); | |
console.log("Boxes after normalization:", boxes); | |
console.log("Canvas size:", canvas.width, canvas.height); | |
if (boxes.length > 0) { | |
const [x1, y1, x2, y2] = boxes[0].bbox_2d; | |
console.log("First box coords:", x1, y1, x2, y2); | |
} | |
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid."); | |
if (Array.isArray(boxes) && boxes.length > 0) { | |
const scaleX = canvas.width / img.naturalWidth; | |
const scaleY = canvas.height / img.naturalHeight; | |
drawBoundingBoxesOnCanvas(ctx, boxes, { scaleX, scaleY }); | |
} | |
setImageProcessed(true); | |
}); | |
setProcessing(false); | |
}; | |
// File mode: process uploaded video frames (start/stop) | |
const handleToggleVideoProcessing = () => { | |
setVideoProcessing((prev) => !prev); | |
}; | |
// Handle start/stop for example video processing | |
const handleToggleExampleProcessing = () => { | |
setExampleProcessing((prev) => !prev); | |
}; | |
// Test draw box function | |
const handleTestDrawBox = () => { | |
if (!canvasRef.current) return; | |
const canvas = canvasRef.current; | |
const ctx = canvas.getContext("2d"); | |
if (!ctx) return; | |
ctx.clearRect(0, 0, canvas.width, canvas.height); | |
ctx.strokeStyle = "#FF00FF"; | |
ctx.lineWidth = 4; | |
ctx.strokeRect(40, 40, Math.max(40,canvas.width/4), Math.max(40,canvas.height/4)); | |
ctx.font = "20px Arial"; | |
ctx.fillStyle = "#FF00FF"; | |
ctx.fillText("Test Box", 50, 35); | |
}; | |
useEffect(() => { | |
const draw = () => { | |
const overlayVideo = overlayVideoRef.current; | |
const canvas = canvasRef.current; | |
if (!overlayVideo || !canvas) return; | |
if (overlayVideo.videoWidth === 0) return; | |
canvas.width = overlayVideo.videoWidth; | |
canvas.height = overlayVideo.videoHeight; | |
const ctx = canvas.getContext("2d"); | |
if (!ctx) return; | |
ctx.clearRect(0, 0, canvas.width, canvas.height); | |
const now = Date.now(); | |
const boxHistory = boxHistoryRef.current.filter((b: any) => now - b.timestamp < 2000); | |
if (boxHistory.length > 0) { | |
const scaleX = canvas.width / overlayVideo.videoWidth; | |
const scaleY = canvas.height / overlayVideo.videoHeight; | |
// Fix: Draw all boxes, even if bbox_2d is an array of arrays | |
const denormalizedBoxes: any[] = []; | |
for (const b of boxHistory) { | |
if (Array.isArray(b.bbox_2d) && Array.isArray(b.bbox_2d[0])) { | |
// Multiple boxes per label | |
for (const arr of b.bbox_2d) { | |
if (Array.isArray(arr) && arr.length === 4) { | |
denormalizedBoxes.push({ | |
...b, | |
bbox_2d: denormalizeBox(arr, canvas.width, canvas.height) | |
}); | |
} | |
} | |
} else if (Array.isArray(b.bbox_2d) && b.bbox_2d.length === 4) { | |
// Single box | |
denormalizedBoxes.push({ | |
...b, | |
bbox_2d: denormalizeBox(b.bbox_2d, canvas.width, canvas.height) | |
}); | |
} | |
} | |
drawBoundingBoxesOnCanvas(ctx, denormalizedBoxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY }); | |
} | |
}; | |
draw(); | |
const interval = setInterval(draw, 100); | |
return () => clearInterval(interval); | |
}, [overlayVideoRef, canvasRef]); | |
return ( | |
<div className="absolute inset-0 text-white"> | |
<div className="fixed top-0 left-0 w-full bg-gray-900 text-white text-center py-2 z-50"> | |
{isLoading ? "Loading model..." : isLoaded ? "Model loaded" : modelError ? `Model error: ${modelError}` : "Model not loaded"} | |
</div> | |
<div className="text-center text-sm text-blue-300 mt-2">{inferenceStatus}</div> | |
<div className="flex flex-col items-center justify-center h-full w-full"> | |
{/* Mode Selector */} | |
<div className="mb-6"> | |
<div className="flex space-x-4"> | |
{MODES.map((m) => ( | |
<button | |
key={m} | |
className={`px-6 py-2 rounded-lg font-semibold transition-all duration-200 ${ | |
mode === m ? "bg-blue-600 text-white" : "bg-gray-700 text-gray-300 hover:bg-blue-500" | |
}`} | |
onClick={() => setMode(m)} | |
> | |
{m} | |
</button> | |
))} | |
</div> | |
</div> | |
{/* Mode Content */} | |
<div className="w-full max-w-2xl flex-1 flex flex-col items-center justify-center"> | |
{mode === "File" && ( | |
<div className="w-full text-center flex flex-col items-center"> | |
<div className="mb-4 w-full max-w-xl"> | |
<label className="block text-left mb-2 font-medium">Detection Prompt:</label> | |
<textarea | |
className="w-full p-2 rounded-lg text-black" | |
rows={3} | |
value={prompt} | |
onChange={(e) => setPrompt(e.target.value)} | |
/> | |
</div> | |
<div className="mb-4 w-full max-w-xl"> | |
<input | |
type="file" | |
accept="image/*,video/*" | |
onChange={handleFileChange} | |
className="block w-full text-sm text-gray-300 file:mr-4 file:py-2 file:px-4 file:rounded-lg file:border-0 file:text-sm file:font-semibold file:bg-blue-600 file:text-white hover:file:bg-blue-700" | |
/> | |
</div> | |
{/* Show uploaded image */} | |
{uploadedFile && isImageFile(uploadedFile) && ( | |
<div className="relative w-full max-w-xl"> | |
<img | |
ref={imageRef} | |
src={uploadedUrl} | |
alt="Uploaded" | |
className="w-full rounded-lg shadow-lg mb-2" | |
style={{ background: "#222" }} | |
/> | |
<canvas | |
ref={canvasRef} | |
className="absolute top-0 left-0 w-full h-full pointer-events-none" | |
style={{ zIndex: 10, pointerEvents: "none" }} | |
/> | |
<button | |
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold" | |
onClick={handleProcessImage} | |
disabled={processing} | |
> | |
{processing ? "Processing..." : imageProcessed ? "Reprocess Image" : "Process Image"} | |
</button> | |
</div> | |
)} | |
{/* Show uploaded video */} | |
{uploadedFile && isVideoFile(uploadedFile) && ( | |
<div className="relative w-full max-w-xl"> | |
{/* Visible overlay video for user */} | |
<video | |
ref={overlayVideoRef} | |
src={uploadedUrl} | |
controls | |
autoPlay | |
loop | |
muted | |
playsInline | |
className="w-full rounded-lg shadow-lg mb-2" | |
style={{ background: "#222" }} | |
/> | |
{/* Hidden processing video for FastVLM/canvas */} | |
<video | |
ref={processingVideoRef} | |
src={uploadedUrl} | |
autoPlay | |
loop | |
muted | |
playsInline | |
style={{ display: "none" }} | |
onLoadedData={e => { e.currentTarget.play().catch(() => {}); }} | |
/> | |
<canvas | |
ref={canvasRef} | |
className="absolute top-0 left-0 w-full h-full pointer-events-none" | |
style={{ zIndex: 20, pointerEvents: "none" }} | |
/> | |
<button | |
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold" | |
onClick={handleToggleVideoProcessing} | |
> | |
{videoProcessing ? "Stop Processing" : "Start Processing"} | |
</button> | |
</div> | |
)} | |
{/* Show example video if no file uploaded */} | |
{!uploadedFile && ( | |
<div className="relative w-full max-w-xl"> | |
{/* Visible overlay video for user */} | |
<video | |
ref={overlayVideoRef} | |
src={EXAMPLE_VIDEO_URL} | |
controls | |
autoPlay | |
loop | |
muted | |
playsInline | |
className="w-full rounded-lg shadow-lg mb-2" | |
style={{ background: "#222" }} | |
/> | |
{/* Hidden processing video for FastVLM/canvas */} | |
<video | |
ref={processingVideoRef} | |
src={EXAMPLE_VIDEO_URL} | |
autoPlay | |
loop | |
muted | |
playsInline | |
style={{ display: "none" }} | |
onLoadedData={e => { e.currentTarget.play().catch(() => {}); }} | |
/> | |
<canvas | |
ref={canvasRef} | |
className="absolute top-0 left-0 w-full h-full pointer-events-none" | |
style={{ zIndex: 20, pointerEvents: "none" }} | |
/> | |
<button | |
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold" | |
onClick={handleToggleExampleProcessing} | |
> | |
{exampleProcessing ? "Stop Processing" : "Start Processing"} | |
</button> | |
</div> | |
)} | |
{processing && <div className="text-blue-400 mt-2">Processing frame...</div>} | |
{error && <div className="text-red-400 mt-2">Error: {error}</div>} | |
<button | |
className="mt-4 px-6 py-2 rounded-lg bg-gray-600 text-white font-semibold" | |
onClick={handleTestDrawBox} | |
> | |
Test Draw Box | |
</button> | |
<div className="mt-2 p-2 bg-gray-800 rounded text-xs"> | |
<div>Canvas: {canvasDims ? `${canvasDims.w}x${canvasDims.h}` : "-"} | Video: {videoDims ? `${videoDims.w}x${videoDims.h}` : "-"}</div> | |
<div>Raw Model Output:</div> | |
<pre className="overflow-x-auto max-h-32 whitespace-pre-wrap">{debugOutput}</pre> | |
</div> | |
</div> | |
)} | |
</div> | |
</div> | |
</div> | |
); | |
} |