Spaces:
Sleeping
Sleeping
| ### 1. Imports and class names setup. ### | |
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_effnet_b2_model | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| # Setup class names | |
| with open("class_names.txt", "r") as f: | |
| class_names = [food.strip() for food in f.readlines()] | |
| ### 2. Model and transforms preparation ### | |
| effnetb2, effnetb2_transforms = create_effnet_b2_model(num_classes=101) | |
| # Load save weights | |
| effnetb2.load_state_dict(torch.load( | |
| f='09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth', | |
| map_location = torch.device("cpu") # Load the model to the CPU | |
| )) | |
| ### 3. Predict function. ### | |
| def predict(img)-> Tuple[Dict, float]: | |
| # Start a timer | |
| start_time = timer() | |
| # Transform the input timage for use with EffNetB2 | |
| img = effnetb2_transforms(img).unsqueeze(dim=0) # add batch dimension | |
| # Put model into eval mode, make prediction | |
| effnetb2.eval() | |
| with torch.inference_mode(): | |
| # Pass transformed image through the model and turn prediciton logits into probabilities | |
| pred_probs = torch.softmax(effnetb2(img), dim=1) | |
| # Create a prediciton label and predicition probability dictionary | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0,i]) for i in range(len(class_names)) } | |
| # Calculate pred time | |
| pred_time = round(timer() - start_time, 4) | |
| # Return pred dict and pred time | |
| return pred_labels_and_probs, pred_time | |
| ### 4. Gradio app ### | |
| # Create example list | |
| example_list = [["examples/" + example for example in os.listdir("examples")]] | |
| # Create title, description and article | |
| title = "FoodVision Big - 🥟" | |
| description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images [101 classes of food from the Food101 dataset](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)." | |
| article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#11-turning-our-foodvision-big-model-into-a-deployable-app)." | |
| demo = gr.Interface( | |
| fn=predict, # maps inputs to outputs, | |
| inputs = gr.Image(type="pil"), | |
| outputs = [gr.Label(num_top_classes=5, label = "Predicitons"), | |
| gr.Number(label= "Prediction time (s)")], | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo | |
| demo.launch() | |