Spaces:
Runtime error
Runtime error
# cnn part | |
import numpy as np | |
import pandas as pd | |
from tensorflow.keras import models | |
from tensorflow.keras.preprocessing import image | |
from PIL import Image, UnidentifiedImageError | |
# load the model | |
loaded_model = models.load_model('728cnn.h5') | |
print(loaded_model.summary()) | |
'''import numpy as np | |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | |
# plot the graph of disease distribution in different positions | |
from matplotlib import pyplot as plt | |
dataset = pd.read_csv("/Users/yuxizheng/xizheng/proj_past_7007/Week_5/Skin_Cancer_MNIST_HAM10000/hmnist_28_28_RGB.csv") | |
image_data = dataset.drop(['label'], axis = 1) | |
image_data = np.array(image_data) | |
images = image_data.reshape(-1, 28, 28, 3) | |
plt.figure(figsize = (10,20)) | |
for i in range(5) : | |
plt.subplot(1,5,i+1) | |
plt.imshow(images[i]) | |
plt.show()''' | |
''' | |
import numpy as np | |
import pandas as pd | |
from tensorflow.keras import models | |
import joblib | |
# load the model | |
# training = models.load_model("828cnn.h5") | |
dataset = pd.read_csv("/Users/yuxizheng/xizheng/proj_past_7007/Week_5/Skin_Cancer_MNIST_HAM10000/hmnist_28_28_RGB.csv") | |
metadata = pd.read_csv("/Users/yuxizheng/xizheng/proj_past_7007/Week_5/Skin_Cancer_MNIST_HAM10000/HAM10000_metadata.csv") | |
print(metadata['dx'].value_counts()) | |
from matplotlib import pyplot as plt | |
import seaborn as sns | |
sns.countplot(x = 'dx', data = metadata) | |
plt.title('Disease class distribution') | |
plt.show() | |
''' | |
''' | |
history = joblib.load('/Users/yuxizheng/xizheng/proj_past_7007/Week_9/history_cnn') | |
print(history['accuracy']) | |
print(history['val_accuracy']) | |
print(history['loss']) | |
print(history['val_loss']) | |
''' | |
''' | |
from matplotlib import pyplot as plt | |
# plot the accuracy of training and validation | |
plt.plot(history['accuracy']) | |
plt.plot(history['val_accuracy']) | |
plt.title('model accuracy') | |
plt.ylabel('accuracy') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'validation']) | |
plt.show() | |
# plot the loss of training and validation | |
plt.plot(history['loss']) | |
plt.plot(history['val_loss']) | |
plt.title('model loss') | |
plt.ylabel('loss') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'validation']) | |
plt.show() | |
''' | |