lllyasviel
commited on
Commit
·
16e8fe9
1
Parent(s):
a770fa7
- modules/core.py +3 -3
- modules/default_pipeline.py +1 -1
- modules/samplers_advanced.py +12 -1
modules/core.py
CHANGED
@@ -178,7 +178,6 @@ def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive,
|
|
178 |
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
179 |
|
180 |
comfy.model_management.load_model_gpu(model)
|
181 |
-
real_model = model.model
|
182 |
|
183 |
noise = noise.to(device)
|
184 |
latent_image = latent_image.to(device)
|
@@ -188,8 +187,9 @@ def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive,
|
|
188 |
|
189 |
models = load_additional_models(positive, negative, model.model_dtype())
|
190 |
|
191 |
-
sampler = KSamplerWithRefiner(
|
192 |
-
|
|
|
193 |
|
194 |
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
195 |
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
|
|
|
178 |
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
179 |
|
180 |
comfy.model_management.load_model_gpu(model)
|
|
|
181 |
|
182 |
noise = noise.to(device)
|
183 |
latent_image = latent_image.to(device)
|
|
|
187 |
|
188 |
models = load_additional_models(positive, negative, model.model_dtype())
|
189 |
|
190 |
+
sampler = KSamplerWithRefiner(model=model.model, refiner_model=refiner.model, steps=steps, device=device,
|
191 |
+
sampler=sampler_name, scheduler=scheduler,
|
192 |
+
denoise=denoise, model_options=model.model_options)
|
193 |
|
194 |
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
195 |
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
|
modules/default_pipeline.py
CHANGED
@@ -27,7 +27,7 @@ def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_siz
|
|
27 |
model=xl_base.unet,
|
28 |
positive=positive_conditions,
|
29 |
negative=negative_conditions,
|
30 |
-
refiner=xl_refiner,
|
31 |
refiner_positive=positive_conditions_refiner,
|
32 |
refiner_negative=negative_conditions_refiner,
|
33 |
refiner_switch_step=20,
|
|
|
27 |
model=xl_base.unet,
|
28 |
positive=positive_conditions,
|
29 |
negative=negative_conditions,
|
30 |
+
refiner=xl_refiner.unet,
|
31 |
refiner_positive=positive_conditions_refiner,
|
32 |
refiner_negative=negative_conditions_refiner,
|
33 |
refiner_switch_step=20,
|
modules/samplers_advanced.py
CHANGED
@@ -7,15 +7,26 @@ class KSamplerWithRefiner:
|
|
7 |
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
8 |
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
9 |
|
10 |
-
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
11 |
self.model = model
|
|
|
|
|
12 |
self.model_denoise = CFGNoisePredictor(self.model)
|
|
|
|
|
13 |
if self.model.model_type == model_base.ModelType.V_PREDICTION:
|
14 |
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
|
15 |
else:
|
16 |
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
self.model_k = KSamplerX0Inpaint(self.model_wrap)
|
|
|
|
|
19 |
self.device = device
|
20 |
if scheduler not in self.SCHEDULERS:
|
21 |
scheduler = self.SCHEDULERS[0]
|
|
|
7 |
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
8 |
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
9 |
|
10 |
+
def __init__(self, model, refiner_model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
11 |
self.model = model
|
12 |
+
self.refiner_model = refiner_model
|
13 |
+
|
14 |
self.model_denoise = CFGNoisePredictor(self.model)
|
15 |
+
self.refiner_model_denoise = CFGNoisePredictor(self.refiner_model)
|
16 |
+
|
17 |
if self.model.model_type == model_base.ModelType.V_PREDICTION:
|
18 |
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
|
19 |
else:
|
20 |
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
|
21 |
|
22 |
+
if self.refiner_model.model_type == model_base.ModelType.V_PREDICTION:
|
23 |
+
self.refiner_model_wrap = CompVisVDenoiser(self.refiner_model_denoise, quantize=True)
|
24 |
+
else:
|
25 |
+
self.refiner_model_wrap = k_diffusion_external.CompVisDenoiser(self.refiner_model_denoise, quantize=True)
|
26 |
+
|
27 |
self.model_k = KSamplerX0Inpaint(self.model_wrap)
|
28 |
+
self.refiner_model_k = KSamplerX0Inpaint(self.refiner_model_wrap)
|
29 |
+
|
30 |
self.device = device
|
31 |
if scheduler not in self.SCHEDULERS:
|
32 |
scheduler = self.SCHEDULERS[0]
|