|
from comfy.samplers import * |
|
|
|
import comfy.model_management |
|
|
|
|
|
class KSamplerWithRefiner: |
|
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"] |
|
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", |
|
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", |
|
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"] |
|
|
|
def __init__(self, model, refiner_model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): |
|
self.model_patcher = model |
|
self.refiner_model_patcher = refiner_model |
|
|
|
self.model = model.model |
|
self.refiner_model = refiner_model.model |
|
|
|
self.model_denoise = CFGNoisePredictor(self.model) |
|
self.refiner_model_denoise = CFGNoisePredictor(self.refiner_model) |
|
|
|
if self.model.model_type == model_base.ModelType.V_PREDICTION: |
|
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True) |
|
else: |
|
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True) |
|
|
|
if self.refiner_model.model_type == model_base.ModelType.V_PREDICTION: |
|
self.refiner_model_wrap = CompVisVDenoiser(self.refiner_model_denoise, quantize=True) |
|
else: |
|
self.refiner_model_wrap = k_diffusion_external.CompVisDenoiser(self.refiner_model_denoise, quantize=True) |
|
|
|
self.model_k = KSamplerX0Inpaint(self.model_wrap) |
|
self.refiner_model_k = KSamplerX0Inpaint(self.refiner_model_wrap) |
|
|
|
self.device = device |
|
if scheduler not in self.SCHEDULERS: |
|
scheduler = self.SCHEDULERS[0] |
|
if sampler not in self.SAMPLERS: |
|
sampler = self.SAMPLERS[0] |
|
self.scheduler = scheduler |
|
self.sampler = sampler |
|
self.sigma_min = float(self.model_wrap.sigma_min) |
|
self.sigma_max = float(self.model_wrap.sigma_max) |
|
self.set_steps(steps, denoise) |
|
self.denoise = denoise |
|
self.model_options = model_options |
|
|
|
def calculate_sigmas(self, steps): |
|
sigmas = None |
|
|
|
discard_penultimate_sigma = False |
|
if self.sampler in ['dpm_2', 'dpm_2_ancestral']: |
|
steps += 1 |
|
discard_penultimate_sigma = True |
|
|
|
if self.scheduler == "karras": |
|
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) |
|
elif self.scheduler == "exponential": |
|
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, |
|
sigma_max=self.sigma_max) |
|
elif self.scheduler == "normal": |
|
sigmas = self.model_wrap.get_sigmas(steps) |
|
elif self.scheduler == "simple": |
|
sigmas = simple_scheduler(self.model_wrap, steps) |
|
elif self.scheduler == "ddim_uniform": |
|
sigmas = ddim_scheduler(self.model_wrap, steps) |
|
else: |
|
print("error invalid scheduler", self.scheduler) |
|
|
|
if discard_penultimate_sigma: |
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) |
|
return sigmas |
|
|
|
def set_steps(self, steps, denoise=None): |
|
self.steps = steps |
|
if denoise is None or denoise > 0.9999: |
|
self.sigmas = self.calculate_sigmas(steps).to(self.device) |
|
else: |
|
new_steps = int(steps / denoise) |
|
sigmas = self.calculate_sigmas(new_steps).to(self.device) |
|
self.sigmas = sigmas[-(steps + 1):] |
|
|
|
def sample(self, noise, positive, negative, refiner_positive, refiner_negative, cfg, latent_image=None, |
|
start_step=None, last_step=None, refiner_switch_step=None, |
|
force_full_denoise=False, denoise_mask=None, sigmas=None, callback_function=None, disable_pbar=False, seed=None): |
|
if sigmas is None: |
|
sigmas = self.sigmas |
|
sigma_min = self.sigma_min |
|
|
|
if last_step is not None and last_step < (len(sigmas) - 1): |
|
sigma_min = sigmas[last_step] |
|
sigmas = sigmas[:last_step + 1] |
|
if force_full_denoise: |
|
sigmas[-1] = 0 |
|
|
|
if start_step is not None: |
|
if start_step < (len(sigmas) - 1): |
|
sigmas = sigmas[start_step:] |
|
else: |
|
if latent_image is not None: |
|
return latent_image |
|
else: |
|
return torch.zeros_like(noise) |
|
|
|
positive = positive[:] |
|
negative = negative[:] |
|
|
|
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device) |
|
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device) |
|
|
|
calculate_start_end_timesteps(self.model_wrap, negative) |
|
calculate_start_end_timesteps(self.model_wrap, positive) |
|
|
|
|
|
for c in positive: |
|
create_cond_with_same_area_if_none(negative, c) |
|
for c in negative: |
|
create_cond_with_same_area_if_none(positive, c) |
|
|
|
pre_run_control(self.model_wrap, negative + positive) |
|
|
|
apply_empty_x_to_equal_area( |
|
list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', |
|
lambda cond_cnets, x: cond_cnets[x]) |
|
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) |
|
|
|
if self.model.is_adm(): |
|
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, |
|
"positive") |
|
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, |
|
"negative") |
|
|
|
refiner_positive = refiner_positive[:] |
|
refiner_negative = refiner_negative[:] |
|
|
|
resolve_cond_masks(refiner_positive, noise.shape[2], noise.shape[3], self.device) |
|
resolve_cond_masks(refiner_negative, noise.shape[2], noise.shape[3], self.device) |
|
|
|
calculate_start_end_timesteps(self.refiner_model_wrap, refiner_positive) |
|
calculate_start_end_timesteps(self.refiner_model_wrap, refiner_negative) |
|
|
|
|
|
for c in refiner_positive: |
|
create_cond_with_same_area_if_none(refiner_negative, c) |
|
for c in refiner_negative: |
|
create_cond_with_same_area_if_none(refiner_positive, c) |
|
|
|
if self.model.is_adm(): |
|
refiner_positive = encode_adm(self.refiner_model, refiner_positive, noise.shape[0], |
|
noise.shape[3], noise.shape[2], self.device, "positive") |
|
refiner_negative = encode_adm(self.refiner_model, refiner_negative, noise.shape[0], |
|
noise.shape[3], noise.shape[2], self.device, "negative") |
|
|
|
def refiner_switch(): |
|
comfy.model_management.load_model_gpu(self.refiner_model_patcher) |
|
self.model_denoise.inner_model = self.refiner_model_denoise.inner_model |
|
for i in range(len(positive)): |
|
positive[i] = refiner_positive[i] |
|
for i in range(len(negative)): |
|
negative[i] = refiner_negative[i] |
|
print('Refiner swapped.') |
|
return |
|
|
|
def callback(step, x0, x, total_steps): |
|
if step == refiner_switch_step: |
|
refiner_switch() |
|
if callback_function is not None: |
|
callback_function(step, x0, x, total_steps) |
|
|
|
if latent_image is not None: |
|
latent_image = self.model.process_latent_in(latent_image) |
|
|
|
extra_args = {"cond": positive, "uncond": negative, "cond_scale": cfg, "model_options": self.model_options, |
|
"seed": seed} |
|
|
|
cond_concat = None |
|
if hasattr(self.model, 'concat_keys'): |
|
cond_concat = [] |
|
for ck in self.model.concat_keys: |
|
if denoise_mask is not None: |
|
if ck == "mask": |
|
cond_concat.append(denoise_mask[:, :1]) |
|
elif ck == "masked_image": |
|
cond_concat.append( |
|
latent_image) |
|
else: |
|
if ck == "mask": |
|
cond_concat.append(torch.ones_like(noise)[:, :1]) |
|
elif ck == "masked_image": |
|
cond_concat.append(blank_inpaint_image_like(noise)) |
|
extra_args["cond_concat"] = cond_concat |
|
|
|
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0): |
|
max_denoise = False |
|
else: |
|
max_denoise = True |
|
|
|
if self.sampler == "uni_pc": |
|
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, |
|
sampling_function=sampling_function, max_denoise=max_denoise, |
|
extra_args=extra_args, noise_mask=denoise_mask, callback=callback, |
|
disable=disable_pbar) |
|
elif self.sampler == "uni_pc_bh2": |
|
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, |
|
sampling_function=sampling_function, max_denoise=max_denoise, |
|
extra_args=extra_args, noise_mask=denoise_mask, callback=callback, |
|
variant='bh2', disable=disable_pbar) |
|
elif self.sampler == "ddim": |
|
raise NotImplementedError('Swapped Refiner Does not support DDIM.') |
|
else: |
|
extra_args["denoise_mask"] = denoise_mask |
|
self.model_k.latent_image = latent_image |
|
self.model_k.noise = noise |
|
|
|
if max_denoise: |
|
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) |
|
else: |
|
noise = noise * sigmas[0] |
|
|
|
k_callback = None |
|
total_steps = len(sigmas) - 1 |
|
if callback is not None: |
|
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) |
|
|
|
if latent_image is not None: |
|
noise += latent_image |
|
if self.sampler == "dpm_fast": |
|
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, |
|
extra_args=extra_args, callback=k_callback, |
|
disable=disable_pbar) |
|
elif self.sampler == "dpm_adaptive": |
|
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], |
|
extra_args=extra_args, callback=k_callback, |
|
disable=disable_pbar) |
|
else: |
|
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, |
|
extra_args=extra_args, |
|
callback=k_callback, |
|
disable=disable_pbar) |
|
|
|
return self.model.process_latent_out(samples.to(torch.float32)) |
|
|