|
import torch |
|
|
|
|
|
Tensor = torch.Tensor |
|
Device = torch.DeviceObjType |
|
Dtype = torch.Type |
|
pad = torch.nn.functional.pad |
|
|
|
|
|
def _compute_zero_padding(kernel_size: tuple[int, int] | int) -> tuple[int, int]: |
|
ky, kx = _unpack_2d_ks(kernel_size) |
|
return (ky - 1) // 2, (kx - 1) // 2 |
|
|
|
|
|
def _unpack_2d_ks(kernel_size: tuple[int, int] | int) -> tuple[int, int]: |
|
if isinstance(kernel_size, int): |
|
ky = kx = kernel_size |
|
else: |
|
assert len(kernel_size) == 2, '2D Kernel size should have a length of 2.' |
|
ky, kx = kernel_size |
|
|
|
ky = int(ky) |
|
kx = int(kx) |
|
return ky, kx |
|
|
|
|
|
def gaussian( |
|
window_size: int, sigma: Tensor | float, *, device: Device | None = None, dtype: Dtype | None = None |
|
) -> Tensor: |
|
|
|
batch_size = sigma.shape[0] |
|
|
|
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) |
|
|
|
if window_size % 2 == 0: |
|
x = x + 0.5 |
|
|
|
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) |
|
|
|
return gauss / gauss.sum(-1, keepdim=True) |
|
|
|
|
|
def get_gaussian_kernel1d( |
|
kernel_size: int, |
|
sigma: float | Tensor, |
|
force_even: bool = False, |
|
*, |
|
device: Device | None = None, |
|
dtype: Dtype | None = None, |
|
) -> Tensor: |
|
|
|
return gaussian(kernel_size, sigma, device=device, dtype=dtype) |
|
|
|
|
|
def get_gaussian_kernel2d( |
|
kernel_size: tuple[int, int] | int, |
|
sigma: tuple[float, float] | Tensor, |
|
force_even: bool = False, |
|
*, |
|
device: Device | None = None, |
|
dtype: Dtype | None = None, |
|
) -> Tensor: |
|
|
|
sigma = torch.Tensor([[sigma, sigma]]).to(device=device, dtype=dtype) |
|
|
|
ksize_y, ksize_x = _unpack_2d_ks(kernel_size) |
|
sigma_y, sigma_x = sigma[:, 0, None], sigma[:, 1, None] |
|
|
|
kernel_y = get_gaussian_kernel1d(ksize_y, sigma_y, force_even, device=device, dtype=dtype)[..., None] |
|
kernel_x = get_gaussian_kernel1d(ksize_x, sigma_x, force_even, device=device, dtype=dtype)[..., None] |
|
|
|
return kernel_y * kernel_x.view(-1, 1, ksize_x) |
|
|
|
|
|
def _bilateral_blur( |
|
input: Tensor, |
|
guidance: Tensor | None, |
|
kernel_size: tuple[int, int] | int, |
|
sigma_color: float | Tensor, |
|
sigma_space: tuple[float, float] | Tensor, |
|
border_type: str = 'reflect', |
|
color_distance_type: str = 'l1', |
|
) -> Tensor: |
|
|
|
if isinstance(sigma_color, Tensor): |
|
sigma_color = sigma_color.to(device=input.device, dtype=input.dtype).view(-1, 1, 1, 1, 1) |
|
|
|
ky, kx = _unpack_2d_ks(kernel_size) |
|
pad_y, pad_x = _compute_zero_padding(kernel_size) |
|
|
|
padded_input = pad(input, (pad_x, pad_x, pad_y, pad_y), mode=border_type) |
|
unfolded_input = padded_input.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2) |
|
|
|
if guidance is None: |
|
guidance = input |
|
unfolded_guidance = unfolded_input |
|
else: |
|
padded_guidance = pad(guidance, (pad_x, pad_x, pad_y, pad_y), mode=border_type) |
|
unfolded_guidance = padded_guidance.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2) |
|
|
|
diff = unfolded_guidance - guidance.unsqueeze(-1) |
|
if color_distance_type == "l1": |
|
color_distance_sq = diff.abs().sum(1, keepdim=True).square() |
|
elif color_distance_type == "l2": |
|
color_distance_sq = diff.square().sum(1, keepdim=True) |
|
else: |
|
raise ValueError("color_distance_type only acceps l1 or l2") |
|
color_kernel = (-0.5 / sigma_color**2 * color_distance_sq).exp() |
|
|
|
space_kernel = get_gaussian_kernel2d(kernel_size, sigma_space, device=input.device, dtype=input.dtype) |
|
space_kernel = space_kernel.view(-1, 1, 1, 1, kx * ky) |
|
|
|
kernel = space_kernel * color_kernel |
|
out = (unfolded_input * kernel).sum(-1) / kernel.sum(-1) |
|
return out |
|
|
|
|
|
def bilateral_blur( |
|
input: Tensor, |
|
kernel_size: tuple[int, int] | int = (13, 13), |
|
sigma_color: float | Tensor = 3.0, |
|
sigma_space: tuple[float, float] | Tensor = 3.0, |
|
border_type: str = 'reflect', |
|
color_distance_type: str = 'l1', |
|
) -> Tensor: |
|
return _bilateral_blur(input, None, kernel_size, sigma_color, sigma_space, border_type, color_distance_type) |
|
|
|
|
|
def joint_bilateral_blur( |
|
input: Tensor, |
|
guidance: Tensor, |
|
kernel_size: tuple[int, int] | int, |
|
sigma_color: float | Tensor, |
|
sigma_space: tuple[float, float] | Tensor, |
|
border_type: str = 'reflect', |
|
color_distance_type: str = 'l1', |
|
) -> Tensor: |
|
return _bilateral_blur(input, guidance, kernel_size, sigma_color, sigma_space, border_type, color_distance_type) |
|
|
|
|
|
class _BilateralBlur(torch.nn.Module): |
|
def __init__( |
|
self, |
|
kernel_size: tuple[int, int] | int, |
|
sigma_color: float | Tensor, |
|
sigma_space: tuple[float, float] | Tensor, |
|
border_type: str = 'reflect', |
|
color_distance_type: str = "l1", |
|
) -> None: |
|
super().__init__() |
|
self.kernel_size = kernel_size |
|
self.sigma_color = sigma_color |
|
self.sigma_space = sigma_space |
|
self.border_type = border_type |
|
self.color_distance_type = color_distance_type |
|
|
|
def __repr__(self) -> str: |
|
return ( |
|
f"{self.__class__.__name__}" |
|
f"(kernel_size={self.kernel_size}, " |
|
f"sigma_color={self.sigma_color}, " |
|
f"sigma_space={self.sigma_space}, " |
|
f"border_type={self.border_type}, " |
|
f"color_distance_type={self.color_distance_type})" |
|
) |
|
|
|
|
|
class BilateralBlur(_BilateralBlur): |
|
def forward(self, input: Tensor) -> Tensor: |
|
return bilateral_blur( |
|
input, self.kernel_size, self.sigma_color, self.sigma_space, self.border_type, self.color_distance_type |
|
) |
|
|
|
|
|
class JointBilateralBlur(_BilateralBlur): |
|
def forward(self, input: Tensor, guidance: Tensor) -> Tensor: |
|
return joint_bilateral_blur( |
|
input, |
|
guidance, |
|
self.kernel_size, |
|
self.sigma_color, |
|
self.sigma_space, |
|
self.border_type, |
|
self.color_distance_type, |
|
) |
|
|