Spaces:
Paused
Paused
lllyasviel
commited on
Commit
·
ca685d6
1
Parent(s):
0e1497e
- modules/default_pipeline.py +16 -2
modules/default_pipeline.py
CHANGED
@@ -9,6 +9,8 @@ xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors')
|
|
9 |
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
|
10 |
|
11 |
xl_base = core.load_model(xl_base_filename)
|
|
|
|
|
12 |
|
13 |
|
14 |
@torch.no_grad()
|
@@ -16,16 +18,28 @@ def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_siz
|
|
16 |
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
|
17 |
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
|
18 |
|
|
|
|
|
|
|
19 |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
|
20 |
|
21 |
sampled_latent = core.ksample(
|
22 |
unet=xl_base.unet,
|
23 |
positive_condition=positive_conditions,
|
24 |
negative_condition=negative_conditions,
|
25 |
-
latent_image=empty_latent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
-
decoded_latent = core.decode_vae(vae=
|
29 |
|
30 |
images = core.image_to_numpy(decoded_latent)
|
31 |
return images
|
|
|
9 |
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
|
10 |
|
11 |
xl_base = core.load_model(xl_base_filename)
|
12 |
+
xl_refiner = core.load_model(xl_refiner_filename)
|
13 |
+
del xl_base.vae
|
14 |
|
15 |
|
16 |
@torch.no_grad()
|
|
|
18 |
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
|
19 |
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
|
20 |
|
21 |
+
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
|
22 |
+
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
|
23 |
+
|
24 |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
|
25 |
|
26 |
sampled_latent = core.ksample(
|
27 |
unet=xl_base.unet,
|
28 |
positive_condition=positive_conditions,
|
29 |
negative_condition=negative_conditions,
|
30 |
+
latent_image=empty_latent,
|
31 |
+
steps=30, start_at_step=0, end_at_step=20, return_with_leftover_noise=True, add_noise=True
|
32 |
+
)
|
33 |
+
|
34 |
+
sampled_latent = core.ksample(
|
35 |
+
unet=xl_refiner.unet,
|
36 |
+
positive_condition=positive_conditions_refiner,
|
37 |
+
negative_condition=negative_conditions_refiner,
|
38 |
+
latent_image=sampled_latent,
|
39 |
+
steps=30, start_at_step=20, end_at_step=30, return_with_leftover_noise=False, add_noise=False
|
40 |
)
|
41 |
|
42 |
+
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
|
43 |
|
44 |
images = core.image_to_numpy(decoded_latent)
|
45 |
return images
|