Spaces:
Running
Running
import os | |
import bz2 | |
import argparse | |
from Project.aligned_image.ffhq_dataset.face_alignment import image_align | |
from Project.aligned_image.ffhq_dataset.landmarks_detector import LandmarksDetector | |
def unpack_bz2(src_path): | |
data = bz2.BZ2File(src_path).read() | |
dst_path = src_path[:-4] | |
with open(dst_path, 'wb') as fp: | |
fp.write(data) | |
return dst_path | |
def align(): | |
""" | |
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step | |
python align_images.py /raw_images /aligned_images | |
""" | |
parser = argparse.ArgumentParser(description='Align faces from input images', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument('--raw_dir',default='static/img_in', help='Directory with raw images for face alignment') | |
parser.add_argument('--aligned_dir',default='static/img_aligned', help='Directory for storing aligned images') | |
parser.add_argument('--output_size', default=1024, help='The dimension of images for input to the model', type=int) | |
parser.add_argument('--x_scale', default=1, help='Scaling factor for x dimension', type=float) | |
parser.add_argument('--y_scale', default=1, help='Scaling factor for y dimension', type=float) | |
parser.add_argument('--em_scale', default=0.1, help='Scaling factor for eye-mouth distance', type=float) | |
parser.add_argument('--use_alpha', default=False, help='Add an alpha channel for masking', type=bool) | |
args, other_args = parser.parse_known_args() | |
landmarks_model_path = unpack_bz2("Project/pretrained_models/shape_predictor_68_face_landmarks.dat.bz2") | |
RAW_IMAGES_DIR = args.raw_dir | |
ALIGNED_IMAGES_DIR = args.aligned_dir | |
landmarks_detector = LandmarksDetector(landmarks_model_path) | |
for img_name in os.listdir(RAW_IMAGES_DIR): | |
print('Aligning %s ...' % img_name) | |
try: | |
raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name) | |
fn = face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], 1) | |
if os.path.isfile(fn): | |
continue | |
print('Getting landmarks...') | |
for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1): | |
try: | |
print('Starting face alignment...') | |
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i) | |
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name) | |
image_align(raw_img_path, aligned_face_path, face_landmarks, output_size=args.output_size, x_scale=args.x_scale, y_scale=args.y_scale, em_scale=args.em_scale, alpha=args.use_alpha) | |
print('Wrote result %s' % aligned_face_path) | |
except Exception as e: | |
print("Exception in face alignment!") | |
print(str(e)) | |
except: | |
print("Exception in landmark detection!") |