Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy_financial as npf
|
7 |
+
import pandas as pd
|
8 |
+
from streamlit_folium import folium_static
|
9 |
+
import leafmap.foliumap as leafmap
|
10 |
+
import folium
|
11 |
+
from shapely.geometry import Point, Polygon
|
12 |
+
import geopandas
|
13 |
+
import geopy
|
14 |
+
from geopy.geocoders import Nominatim
|
15 |
+
from geopy.extra.rate_limiter import RateLimiter
|
16 |
+
from scipy.spatial import cKDTree
|
17 |
+
|
18 |
+
#-----------------------------------------
|
19 |
+
# Set page settings
|
20 |
+
st.set_page_config(layout="wide")
|
21 |
+
|
22 |
+
#-----------------------------------------
|
23 |
+
# Sidebar
|
24 |
+
with st.sidebar:
|
25 |
+
st.header('Welcome to the Airbnb Investment Tool!')
|
26 |
+
nav = st.selectbox('Navigation', ['Heuristic Pricing',
|
27 |
+
'Investment Analysis',
|
28 |
+
'Customer View'])
|
29 |
+
|
30 |
+
#-----------------------------------------
|
31 |
+
# Additional Functions
|
32 |
+
|
33 |
+
def p_title(title):
|
34 |
+
st.markdown(f'<h3 style="text-align: left; color:#F63366; font-size:28px;">{title}</h3>', unsafe_allow_html=True)
|
35 |
+
|
36 |
+
|
37 |
+
# Function to return a GeoPandas DataFrame containing the listings
|
38 |
+
# that are within a specified radius from a specified lat, long.
|
39 |
+
def getNearbyListings(gdf_proj, input_long, input_lat, radius):
|
40 |
+
# Build Tree
|
41 |
+
airbnbCoords = np.array(list(gdf_proj.geometry.apply(lambda x: (x.x, x.y))))
|
42 |
+
airbnbTree = cKDTree(airbnbCoords)
|
43 |
+
|
44 |
+
# Convert lat-long to projected coords
|
45 |
+
gdf_input = geopandas.GeoSeries.from_xy(x=[input_long], y=[input_lat], crs=4326)
|
46 |
+
gdf_input_proj = gdf_input.to_crs(crs=32634)
|
47 |
+
|
48 |
+
coords = np.array(list((gdf_input_proj.x[0], gdf_input_proj.y[0])))
|
49 |
+
|
50 |
+
# Returns list of indices whose distance is <= radius
|
51 |
+
neighbours_indices = airbnbTree.query_ball_point(coords, radius)
|
52 |
+
gdf_neighbours_proj = gdf_proj.iloc[neighbours_indices, :]
|
53 |
+
gdf_neighbours = gdf_neighbours_proj.to_crs(crs=4326)
|
54 |
+
|
55 |
+
return gdf_neighbours
|
56 |
+
|
57 |
+
# Function to return IRR.
|
58 |
+
# Financial Modelling Tool.
|
59 |
+
def investment_tool(house_price, loan_amount, loan_period, percentage_loan_interest_annual,
|
60 |
+
rental_charged_monthly, percentage_rental_tax, percentage_increase_in_rental_yearly, utilisation_rate,
|
61 |
+
yearly_refurbishment_costs, percentage_increase_in_refurbishment_yearly, ending_value_of_house):
|
62 |
+
|
63 |
+
#expected format of percentage parameters is whole number and not decimals i.e., 5 instead of 0.05
|
64 |
+
#all non-% parameters are expected to be positive
|
65 |
+
|
66 |
+
house_price = int(house_price)
|
67 |
+
loan_amount = int(loan_amount)
|
68 |
+
loan_period = int(loan_period)
|
69 |
+
percentage_loan_interest_annual = int(percentage_loan_interest_annual)
|
70 |
+
rental_charged_monthly = int(rental_charged_monthly)
|
71 |
+
percentage_rental_tax = int(percentage_rental_tax)
|
72 |
+
percentage_increase_in_rental_yearly = int(percentage_increase_in_rental_yearly)
|
73 |
+
percentage_utilisation_rate = int(utilisation_rate)
|
74 |
+
yearly_refurbishment_costs = int(yearly_refurbishment_costs)
|
75 |
+
percentage_increase_in_refurbishment_yearly = int(percentage_increase_in_refurbishment_yearly)
|
76 |
+
ending_value_of_house = int(ending_value_of_house)
|
77 |
+
|
78 |
+
#ensuring the figures make sense
|
79 |
+
if loan_amount > house_price:
|
80 |
+
return print("Loan Amount cannot exceed House Price")
|
81 |
+
|
82 |
+
#creating the list of cash flows to be used to calculate internal rate of return
|
83 |
+
initial_cashflow = -(1 - loan_amount/house_price) * house_price
|
84 |
+
cashflow_list = [initial_cashflow]
|
85 |
+
|
86 |
+
#finding the annual mortgage assuming equal amortization
|
87 |
+
mortgage = npf.pmt(percentage_loan_interest_annual / 100, loan_period, loan_amount) #the np.pmt function will automatically put mortgage as a negative cashflow
|
88 |
+
|
89 |
+
#finding the annual cashflows & loan balance changes during the loan period and appending them to the respective lists
|
90 |
+
for i in range(loan_period):
|
91 |
+
rental = 12 * rental_charged_monthly * ((1 + (percentage_increase_in_rental_yearly / 100)) ** i) * (1 - (percentage_rental_tax / 100)) * utilisation_rate / 100
|
92 |
+
refurbishment_cost = -1 * yearly_refurbishment_costs * ((1 + (percentage_increase_in_refurbishment_yearly / 100)) ** i)
|
93 |
+
|
94 |
+
#the condition here is to include the salvage/ending value of the house to cashflows after loan repayments are finished
|
95 |
+
if i == (loan_period-1):
|
96 |
+
yearly_cashflow = ending_value_of_house + rental + mortgage + refurbishment_cost
|
97 |
+
else:
|
98 |
+
yearly_cashflow = rental + mortgage + refurbishment_cost
|
99 |
+
cashflow_list.append(yearly_cashflow)
|
100 |
+
|
101 |
+
#finding the internal rate of return
|
102 |
+
irr = round(npf.irr(cashflow_list), 4)
|
103 |
+
|
104 |
+
#-----------------------------------
|
105 |
+
#Dataframe for plotting of graph
|
106 |
+
loan_dict = {'Year': [0], 'Starting Loan Balance': [0], 'Cumulative Interest Paid': [0], 'Cumulative Principal Paid': [0], 'Remaining Loan Balance': [0]}
|
107 |
+
|
108 |
+
# Create DataFrame
|
109 |
+
loan_dataframe = pd.DataFrame(loan_dict)
|
110 |
+
|
111 |
+
#finding the annual mortgage assuming equal amortization
|
112 |
+
mortgage = npf.pmt(percentage_loan_interest_annual / 100, loan_period, loan_amount) #the np.pmt function will automatically put mortgage as a negative cashflow
|
113 |
+
|
114 |
+
#updating the global dataframe
|
115 |
+
loan_dataframe.loc[0,'Starting Loan Balance'] = loan_amount
|
116 |
+
|
117 |
+
for i in range(loan_period):
|
118 |
+
loan_dataframe.loc[i,'Year'] = i+1
|
119 |
+
|
120 |
+
#the condition here is to calculate principal and interest paid
|
121 |
+
if i == 0:
|
122 |
+
loan_dataframe.loc[i,'Cumulative Interest Paid'] = loan_dataframe.loc[i,'Starting Loan Balance'] * (percentage_loan_interest_annual / 100)
|
123 |
+
loan_dataframe.loc[i,'Cumulative Principal Paid'] = (-1 * mortgage) - (loan_dataframe.loc[i,'Starting Loan Balance'] * (percentage_loan_interest_annual / 100))
|
124 |
+
else:
|
125 |
+
loan_dataframe.loc[i,'Cumulative Interest Paid'] = loan_dataframe.loc[i,'Starting Loan Balance'] * (percentage_loan_interest_annual / 100) + loan_dataframe.loc[i-1,'Cumulative Interest Paid']
|
126 |
+
loan_dataframe.loc[i,'Cumulative Principal Paid'] = (-1 * mortgage) - (loan_dataframe.loc[i,'Starting Loan Balance'] * (percentage_loan_interest_annual / 100)) + loan_dataframe.loc[i-1,'Cumulative Principal Paid']
|
127 |
+
|
128 |
+
loan_dataframe.loc[i,'Remaining Loan Balance'] = loan_dataframe.loc[i,'Starting Loan Balance'] + (loan_dataframe.loc[i,'Starting Loan Balance'] * (percentage_loan_interest_annual / 100)) + mortgage
|
129 |
+
|
130 |
+
#condition to update starting loan balance
|
131 |
+
if i != loan_period-1:
|
132 |
+
loan_dataframe.loc[i+1,'Starting Loan Balance'] = loan_dataframe.loc[i,'Remaining Loan Balance']
|
133 |
+
|
134 |
+
loan_dataframe['Remaining Loan Balance'] = pd.to_numeric(loan_dataframe['Remaining Loan Balance'])
|
135 |
+
|
136 |
+
return irr, loan_dataframe
|
137 |
+
|
138 |
+
#-----------------------------------------
|
139 |
+
# Load Airbnb listings data
|
140 |
+
df_raw = pd.read_csv("data/listings_sf_withamenities.csv")
|
141 |
+
df = df_raw.copy()
|
142 |
+
gdf = geopandas.GeoDataFrame(
|
143 |
+
df,
|
144 |
+
geometry=geopandas.points_from_xy(df.longitude, df.latitude),
|
145 |
+
crs=4326)
|
146 |
+
gdf_proj = gdf.to_crs(crs=32634)
|
147 |
+
|
148 |
+
#-----------------------------------------
|
149 |
+
# Tab 1: Heuristic Pricing
|
150 |
+
if nav == 'Heuristic Pricing':
|
151 |
+
|
152 |
+
st.markdown("<h3 style='text-align: center; color:grey;'>Airbnb 🏠</h3>", unsafe_allow_html=True)
|
153 |
+
st.text('')
|
154 |
+
p_title('Heuristic Pricing')
|
155 |
+
st.text('')
|
156 |
+
|
157 |
+
# Get address inputs
|
158 |
+
st.caption('Enter your address:')
|
159 |
+
with st.form("heuristics_form"):
|
160 |
+
col1, col2 = st.columns(2)
|
161 |
+
with col1:
|
162 |
+
postalcode = st.text_input("Postal Code", "94109")
|
163 |
+
street = st.text_input("Street", "1788 Clay Street")
|
164 |
+
city = st.selectbox("City", ["San Francisco"])
|
165 |
+
with col2:
|
166 |
+
state = st.selectbox("State", ["California"])
|
167 |
+
country = st.selectbox("Country", ["United States"])
|
168 |
+
radius = st.slider("Distance of nearest listings (metres)", min_value=500, max_value=2000, value=500, step=500)
|
169 |
+
submitted = st.form_submit_button("Submit")
|
170 |
+
|
171 |
+
if submitted:
|
172 |
+
# Get geolocation
|
173 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
174 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
175 |
+
location = geolocator.geocode({"postalcode": postalcode, "street": street, "city": city, "state": state, "country": country})
|
176 |
+
|
177 |
+
# If the search address yields no result, set to default coords of San Fran
|
178 |
+
if location is None:
|
179 |
+
lat = 37.773972
|
180 |
+
lon = -122.431297
|
181 |
+
st.error("Address is not found. Please try again.")
|
182 |
+
else:
|
183 |
+
lat = location.latitude
|
184 |
+
lon = location.longitude
|
185 |
+
|
186 |
+
# Compute Stats
|
187 |
+
st.markdown('___')
|
188 |
+
st.caption('Recommended Pricing:')
|
189 |
+
gdf_nearby_listings = getNearbyListings(gdf_proj, lon, lat, radius=radius)
|
190 |
+
if len(gdf_nearby_listings) == 0:
|
191 |
+
st.error("There are no nearby listings.")
|
192 |
+
else:
|
193 |
+
col3, col4 = st.columns(2)
|
194 |
+
with col3:
|
195 |
+
df_nearby_stats = gdf_nearby_listings[["price"]].describe()
|
196 |
+
st.table(df_nearby_stats)
|
197 |
+
with col4:
|
198 |
+
# Plot Stats
|
199 |
+
fig = plt.figure(figsize=(10, 4))
|
200 |
+
sns.boxplot(x="price", data=gdf_nearby_listings, showfliers=False)
|
201 |
+
st.pyplot(fig)
|
202 |
+
|
203 |
+
# Plot using leafmap. Responsive width.
|
204 |
+
m = leafmap.Map(tiles="OpenStreetMap", location=[lat, lon], zoom_start=15)
|
205 |
+
m.add_marker(location=[lat, lon])
|
206 |
+
m.add_points_from_xy(gdf_nearby_listings, x="longitude", y="latitude",
|
207 |
+
popup=["id", "price", "review_scores_rating"],
|
208 |
+
color_options=['red'])
|
209 |
+
m.add_heatmap(data=gdf_nearby_listings,
|
210 |
+
latitude="latitude", longitude="longitude",
|
211 |
+
value="price", min_opacity=0.1,
|
212 |
+
name="Price Heatmap", blue=50)
|
213 |
+
m.to_streamlit()
|
214 |
+
|
215 |
+
#-----------------------------------------
|
216 |
+
# Tab 2: Investment Analysis
|
217 |
+
if nav == 'Investment Analysis':
|
218 |
+
st.markdown("<h3 style='text-align: center; color:grey;'>Airbnb 🏠</h3>", unsafe_allow_html=True)
|
219 |
+
st.text('')
|
220 |
+
p_title('Investment Analysis')
|
221 |
+
|
222 |
+
# Financial Projections
|
223 |
+
st.caption("Enter data here")
|
224 |
+
with st.form("investment_form"):
|
225 |
+
col1_2, col2_2, col3_2 = st.columns(3)
|
226 |
+
with col1_2:
|
227 |
+
house_price = st.number_input("Purchase Price of House ($)", min_value=0, value=250000)
|
228 |
+
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=150000)
|
229 |
+
loan_period = st.number_input("Loan Period (Years)", min_value=0, value=15)
|
230 |
+
percentage_loan_interest_annual = st.number_input("Annual Loan I/R (%)", min_value=0.0, max_value=100.0, value=2.1)
|
231 |
+
with col2_2:
|
232 |
+
rental_charged_monthly = st.number_input("Monthly Rental ($)", min_value=0, value=2000)
|
233 |
+
percentage_rental_tax = st.number_input("Rental Tax (%)", min_value=0.0, value=0.0)
|
234 |
+
percentage_increase_in_rental_yearly = st.number_input("Annual Rental Increase (%)", min_value=0.0, value=1.0)
|
235 |
+
utilisation_rate = st.number_input("Utilisation Rate (%)", min_value=0.0, value=50.0)
|
236 |
+
with col3_2:
|
237 |
+
yearly_refurbishment_costs = st.number_input("Yearly Refurbishment Costs ($)", min_value=0, value=3000)
|
238 |
+
percentage_increase_in_refurbishment_yearly = st.number_input("Yearly Refurbishment Costs Increase (%)", min_value=0.0, value=2.0)
|
239 |
+
ending_value_of_house = st.number_input("Ending Value of House ($)", min_value=0, value=300000)
|
240 |
+
submitted2 = st.form_submit_button("Submit")
|
241 |
+
|
242 |
+
if submitted2:
|
243 |
+
irr, loan_dataframe = investment_tool(house_price, loan_amount, loan_period, percentage_loan_interest_annual,
|
244 |
+
rental_charged_monthly, percentage_rental_tax, percentage_increase_in_rental_yearly, utilisation_rate,
|
245 |
+
yearly_refurbishment_costs, percentage_increase_in_refurbishment_yearly, ending_value_of_house)
|
246 |
+
st.markdown('___')
|
247 |
+
st.caption("Expected Internal Rate of Return")
|
248 |
+
st.text("{:.2%}".format(irr))
|
249 |
+
# Print plots
|
250 |
+
fig = plt.figure(figsize=(10, 4))
|
251 |
+
plt.bar(loan_dataframe['Year'], loan_dataframe['Cumulative Principal Paid'], color='lightcoral')
|
252 |
+
plt.bar(loan_dataframe['Year'], loan_dataframe['Cumulative Interest Paid'], bottom=loan_dataframe['Cumulative Principal Paid'], color='lightsalmon')
|
253 |
+
plt.plot(loan_dataframe['Year'], loan_dataframe['Remaining Loan Balance'], color='crimson')
|
254 |
+
plt.ylabel('Amount')
|
255 |
+
plt.title('Loan Balance')
|
256 |
+
plt.legend(('Loan Balance Remaining','Cumulative Principal Paid', 'Cumulative Interest Paid'))
|
257 |
+
st.pyplot(fig)
|
258 |
+
|
259 |
+
if nav == "Customer View":
|
260 |
+
st.markdown("<h3 style='text-align: center; color:grey;'>Airbnb 🏠</h3>", unsafe_allow_html=True)
|
261 |
+
st.text('')
|
262 |
+
p_title('Customer View')
|
263 |
+
|
264 |
+
customer_tableau_embed_code = "<div class='tableauPlaceholder' id='viz1650723513927' style='position: relative'><noscript><a href='#'><img alt=' ' src='https://public.tableau.com/static/images/Da/Dashboard_1_16505589498970/EDA/1_rss.png' style='border: none' /></a></noscript><object class='tableauViz' style='display:none;'><param name='host_url' value='https%3A%2F%2Fpublic.tableau.com%2F' /> <param name='embed_code_version' value='3' /> <param name='site_root' value='' /><param name='name' value='Dashboard_1_16505589498970/EDA' /><param name='tabs' value='yes' /><param name='toolbar' value='yes' /><param name='static_image' value='https://public.tableau.com/static/images/Da/Dashboard_1_16505589498970/EDA/1.png' /> <param name='animate_transition' value='yes' /><param name='display_static_image' value='yes' /><param name='display_spinner' value='yes' /><param name='display_overlay' value='yes' /><param name='display_count' value='yes' /><param name='language' value='en-US' /></object></div> <script type='text/javascript'> var divElement = document.getElementById('viz1650723513927'); var vizElement = divElement.getElementsByTagName('object')[0]; if ( divElement.offsetWidth > 800 ) { vizElement.style.width='1600px';vizElement.style.height='1150px';} else if ( divElement.offsetWidth > 500 ) { vizElement.style.width='1600px';vizElement.style.height='1150px';} else { vizElement.style.width='100%';vizElement.style.height='2850px';} var scriptElement = document.createElement('script'); scriptElement.src = 'https://public.tableau.com/javascripts/api/viz_v1.js'; vizElement.parentNode.insertBefore(scriptElement, vizElement); </script>"
|
265 |
+
st.components.v1.html(customer_tableau_embed_code, height=2000, scrolling=True)
|