QingyanBai commited on
Commit
a42ebba
·
verified ·
1 Parent(s): 54ce986

Upload 750 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +9 -0
  2. .gitignore +26 -0
  3. alembic.ini +84 -0
  4. alembic_db/README.md +4 -0
  5. alembic_db/env.py +64 -0
  6. alembic_db/script.py.mako +28 -0
  7. api_server/__init__.py +0 -0
  8. api_server/routes/__init__.py +0 -0
  9. api_server/routes/internal/README.md +3 -0
  10. api_server/routes/internal/__init__.py +0 -0
  11. api_server/routes/internal/internal_routes.py +73 -0
  12. api_server/services/__init__.py +0 -0
  13. api_server/services/terminal_service.py +60 -0
  14. api_server/utils/file_operations.py +42 -0
  15. app.py +560 -0
  16. app/__init__.py +0 -0
  17. app/app_settings.py +65 -0
  18. app/custom_node_manager.py +145 -0
  19. app/database/db.py +112 -0
  20. app/database/models.py +14 -0
  21. app/frontend_management.py +326 -0
  22. app/logger.py +98 -0
  23. app/model_manager.py +184 -0
  24. app/user_manager.py +436 -0
  25. comfy/checkpoint_pickle.py +13 -0
  26. comfy/cldm/cldm.py +433 -0
  27. comfy/cldm/control_types.py +10 -0
  28. comfy/cldm/dit_embedder.py +120 -0
  29. comfy/cldm/mmdit.py +81 -0
  30. comfy/cli_args.py +235 -0
  31. comfy/clip_config_bigg.json +23 -0
  32. comfy/clip_model.py +244 -0
  33. comfy/clip_vision.py +148 -0
  34. comfy/clip_vision_config_g.json +18 -0
  35. comfy/clip_vision_config_h.json +18 -0
  36. comfy/clip_vision_config_vitl.json +18 -0
  37. comfy/clip_vision_config_vitl_336.json +18 -0
  38. comfy/clip_vision_config_vitl_336_llava.json +19 -0
  39. comfy/clip_vision_siglip_384.json +13 -0
  40. comfy/clip_vision_siglip_512.json +13 -0
  41. comfy/comfy_types/README.md +43 -0
  42. comfy/comfy_types/__init__.py +46 -0
  43. comfy/comfy_types/examples/example_nodes.py +28 -0
  44. comfy/comfy_types/examples/input_options.png +0 -0
  45. comfy/comfy_types/examples/input_types.png +0 -0
  46. comfy/comfy_types/examples/required_hint.png +0 -0
  47. comfy/comfy_types/node_typing.py +350 -0
  48. comfy/conds.py +130 -0
  49. comfy/controlnet.py +858 -0
  50. comfy/diffusers_convert.py +189 -0
.gitattributes CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ custom_nodes/ComfyUI_WanVideoWrapper/configs/T5_tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ custom_nodes/ComfyUI-KJNodes/docs/images/2024-04-03_20_49_29-ComfyUI.png filter=lfs diff=lfs merge=lfs -text
38
+ custom_nodes/ComfyUI-KJNodes/fonts/FreeMono.ttf filter=lfs diff=lfs merge=lfs -text
39
+ custom_nodes/ComfyUI-KJNodes/fonts/FreeMonoBoldOblique.otf filter=lfs diff=lfs merge=lfs -text
40
+ custom_nodes/ComfyUI-KJNodes/fonts/TTNorms-Black.otf filter=lfs diff=lfs merge=lfs -text
41
+ custom_nodes/ComfyUI-to-Python-Extension/images/comfyui_to_python_banner.png filter=lfs diff=lfs merge=lfs -text
42
+ custom_nodes/ComfyUI-to-Python-Extension/images/SDXL-UI-Example.PNG filter=lfs diff=lfs merge=lfs -text
43
+ input/009c.mp4 filter=lfs diff=lfs merge=lfs -text
44
+ input/dasha.mp4 filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ *.py[cod]
3
+ /output/
4
+ /input/
5
+ !/input/example.png
6
+ /models/
7
+ /temp/
8
+ /custom_nodes/
9
+ !custom_nodes/example_node.py.example
10
+ extra_model_paths.yaml
11
+ /.vs
12
+ .vscode/
13
+ .idea/
14
+ venv/
15
+ .venv/
16
+ /web/extensions/*
17
+ !/web/extensions/logging.js.example
18
+ !/web/extensions/core/
19
+ /tests-ui/data/object_info.json
20
+ /user/
21
+ *.log
22
+ web_custom_versions/
23
+ .DS_Store
24
+ openapi.yaml
25
+ filtered-openapi.yaml
26
+ uv.lock
alembic.ini ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A generic, single database configuration.
2
+
3
+ [alembic]
4
+ # path to migration scripts
5
+ # Use forward slashes (/) also on windows to provide an os agnostic path
6
+ script_location = alembic_db
7
+
8
+ # template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
9
+ # Uncomment the line below if you want the files to be prepended with date and time
10
+ # see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
11
+ # for all available tokens
12
+ # file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
13
+
14
+ # sys.path path, will be prepended to sys.path if present.
15
+ # defaults to the current working directory.
16
+ prepend_sys_path = .
17
+
18
+ # timezone to use when rendering the date within the migration file
19
+ # as well as the filename.
20
+ # If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
21
+ # Any required deps can installed by adding `alembic[tz]` to the pip requirements
22
+ # string value is passed to ZoneInfo()
23
+ # leave blank for localtime
24
+ # timezone =
25
+
26
+ # max length of characters to apply to the "slug" field
27
+ # truncate_slug_length = 40
28
+
29
+ # set to 'true' to run the environment during
30
+ # the 'revision' command, regardless of autogenerate
31
+ # revision_environment = false
32
+
33
+ # set to 'true' to allow .pyc and .pyo files without
34
+ # a source .py file to be detected as revisions in the
35
+ # versions/ directory
36
+ # sourceless = false
37
+
38
+ # version location specification; This defaults
39
+ # to alembic_db/versions. When using multiple version
40
+ # directories, initial revisions must be specified with --version-path.
41
+ # The path separator used here should be the separator specified by "version_path_separator" below.
42
+ # version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
43
+
44
+ # version path separator; As mentioned above, this is the character used to split
45
+ # version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
46
+ # If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
47
+ # Valid values for version_path_separator are:
48
+ #
49
+ # version_path_separator = :
50
+ # version_path_separator = ;
51
+ # version_path_separator = space
52
+ # version_path_separator = newline
53
+ #
54
+ # Use os.pathsep. Default configuration used for new projects.
55
+ version_path_separator = os
56
+
57
+ # set to 'true' to search source files recursively
58
+ # in each "version_locations" directory
59
+ # new in Alembic version 1.10
60
+ # recursive_version_locations = false
61
+
62
+ # the output encoding used when revision files
63
+ # are written from script.py.mako
64
+ # output_encoding = utf-8
65
+
66
+ sqlalchemy.url = sqlite:///user/comfyui.db
67
+
68
+
69
+ [post_write_hooks]
70
+ # post_write_hooks defines scripts or Python functions that are run
71
+ # on newly generated revision scripts. See the documentation for further
72
+ # detail and examples
73
+
74
+ # format using "black" - use the console_scripts runner, against the "black" entrypoint
75
+ # hooks = black
76
+ # black.type = console_scripts
77
+ # black.entrypoint = black
78
+ # black.options = -l 79 REVISION_SCRIPT_FILENAME
79
+
80
+ # lint with attempts to fix using "ruff" - use the exec runner, execute a binary
81
+ # hooks = ruff
82
+ # ruff.type = exec
83
+ # ruff.executable = %(here)s/.venv/bin/ruff
84
+ # ruff.options = check --fix REVISION_SCRIPT_FILENAME
alembic_db/README.md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ## Generate new revision
2
+
3
+ 1. Update models in `/app/database/models.py`
4
+ 2. Run `alembic revision --autogenerate -m "{your message}"`
alembic_db/env.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sqlalchemy import engine_from_config
2
+ from sqlalchemy import pool
3
+
4
+ from alembic import context
5
+
6
+ # this is the Alembic Config object, which provides
7
+ # access to the values within the .ini file in use.
8
+ config = context.config
9
+
10
+
11
+ from app.database.models import Base
12
+ target_metadata = Base.metadata
13
+
14
+ # other values from the config, defined by the needs of env.py,
15
+ # can be acquired:
16
+ # my_important_option = config.get_main_option("my_important_option")
17
+ # ... etc.
18
+
19
+
20
+ def run_migrations_offline() -> None:
21
+ """Run migrations in 'offline' mode.
22
+ This configures the context with just a URL
23
+ and not an Engine, though an Engine is acceptable
24
+ here as well. By skipping the Engine creation
25
+ we don't even need a DBAPI to be available.
26
+ Calls to context.execute() here emit the given string to the
27
+ script output.
28
+ """
29
+ url = config.get_main_option("sqlalchemy.url")
30
+ context.configure(
31
+ url=url,
32
+ target_metadata=target_metadata,
33
+ literal_binds=True,
34
+ dialect_opts={"paramstyle": "named"},
35
+ )
36
+
37
+ with context.begin_transaction():
38
+ context.run_migrations()
39
+
40
+
41
+ def run_migrations_online() -> None:
42
+ """Run migrations in 'online' mode.
43
+ In this scenario we need to create an Engine
44
+ and associate a connection with the context.
45
+ """
46
+ connectable = engine_from_config(
47
+ config.get_section(config.config_ini_section, {}),
48
+ prefix="sqlalchemy.",
49
+ poolclass=pool.NullPool,
50
+ )
51
+
52
+ with connectable.connect() as connection:
53
+ context.configure(
54
+ connection=connection, target_metadata=target_metadata
55
+ )
56
+
57
+ with context.begin_transaction():
58
+ context.run_migrations()
59
+
60
+
61
+ if context.is_offline_mode():
62
+ run_migrations_offline()
63
+ else:
64
+ run_migrations_online()
alembic_db/script.py.mako ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """${message}
2
+
3
+ Revision ID: ${up_revision}
4
+ Revises: ${down_revision | comma,n}
5
+ Create Date: ${create_date}
6
+
7
+ """
8
+ from typing import Sequence, Union
9
+
10
+ from alembic import op
11
+ import sqlalchemy as sa
12
+ ${imports if imports else ""}
13
+
14
+ # revision identifiers, used by Alembic.
15
+ revision: str = ${repr(up_revision)}
16
+ down_revision: Union[str, None] = ${repr(down_revision)}
17
+ branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
18
+ depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
19
+
20
+
21
+ def upgrade() -> None:
22
+ """Upgrade schema."""
23
+ ${upgrades if upgrades else "pass"}
24
+
25
+
26
+ def downgrade() -> None:
27
+ """Downgrade schema."""
28
+ ${downgrades if downgrades else "pass"}
api_server/__init__.py ADDED
File without changes
api_server/routes/__init__.py ADDED
File without changes
api_server/routes/internal/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # ComfyUI Internal Routes
2
+
3
+ All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.
api_server/routes/internal/__init__.py ADDED
File without changes
api_server/routes/internal/internal_routes.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from aiohttp import web
2
+ from typing import Optional
3
+ from folder_paths import folder_names_and_paths, get_directory_by_type
4
+ from api_server.services.terminal_service import TerminalService
5
+ import app.logger
6
+ import os
7
+
8
+ class InternalRoutes:
9
+ '''
10
+ The top level web router for internal routes: /internal/*
11
+ The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
12
+ Check README.md for more information.
13
+ '''
14
+
15
+ def __init__(self, prompt_server):
16
+ self.routes: web.RouteTableDef = web.RouteTableDef()
17
+ self._app: Optional[web.Application] = None
18
+ self.prompt_server = prompt_server
19
+ self.terminal_service = TerminalService(prompt_server)
20
+
21
+ def setup_routes(self):
22
+ @self.routes.get('/logs')
23
+ async def get_logs(request):
24
+ return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
25
+
26
+ @self.routes.get('/logs/raw')
27
+ async def get_raw_logs(request):
28
+ self.terminal_service.update_size()
29
+ return web.json_response({
30
+ "entries": list(app.logger.get_logs()),
31
+ "size": {"cols": self.terminal_service.cols, "rows": self.terminal_service.rows}
32
+ })
33
+
34
+ @self.routes.patch('/logs/subscribe')
35
+ async def subscribe_logs(request):
36
+ json_data = await request.json()
37
+ client_id = json_data["clientId"]
38
+ enabled = json_data["enabled"]
39
+ if enabled:
40
+ self.terminal_service.subscribe(client_id)
41
+ else:
42
+ self.terminal_service.unsubscribe(client_id)
43
+
44
+ return web.Response(status=200)
45
+
46
+
47
+ @self.routes.get('/folder_paths')
48
+ async def get_folder_paths(request):
49
+ response = {}
50
+ for key in folder_names_and_paths:
51
+ response[key] = folder_names_and_paths[key][0]
52
+ return web.json_response(response)
53
+
54
+ @self.routes.get('/files/{directory_type}')
55
+ async def get_files(request: web.Request) -> web.Response:
56
+ directory_type = request.match_info['directory_type']
57
+ if directory_type not in ("output", "input", "temp"):
58
+ return web.json_response({"error": "Invalid directory type"}, status=400)
59
+
60
+ directory = get_directory_by_type(directory_type)
61
+ sorted_files = sorted(
62
+ (entry for entry in os.scandir(directory) if entry.is_file()),
63
+ key=lambda entry: -entry.stat().st_mtime
64
+ )
65
+ return web.json_response([entry.name for entry in sorted_files], status=200)
66
+
67
+
68
+ def get_app(self):
69
+ if self._app is None:
70
+ self._app = web.Application()
71
+ self.setup_routes()
72
+ self._app.add_routes(self.routes)
73
+ return self._app
api_server/services/__init__.py ADDED
File without changes
api_server/services/terminal_service.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from app.logger import on_flush
2
+ import os
3
+ import shutil
4
+
5
+
6
+ class TerminalService:
7
+ def __init__(self, server):
8
+ self.server = server
9
+ self.cols = None
10
+ self.rows = None
11
+ self.subscriptions = set()
12
+ on_flush(self.send_messages)
13
+
14
+ def get_terminal_size(self):
15
+ try:
16
+ size = os.get_terminal_size()
17
+ return (size.columns, size.lines)
18
+ except OSError:
19
+ try:
20
+ size = shutil.get_terminal_size()
21
+ return (size.columns, size.lines)
22
+ except OSError:
23
+ return (80, 24) # fallback to 80x24
24
+
25
+ def update_size(self):
26
+ columns, lines = self.get_terminal_size()
27
+ changed = False
28
+
29
+ if columns != self.cols:
30
+ self.cols = columns
31
+ changed = True
32
+
33
+ if lines != self.rows:
34
+ self.rows = lines
35
+ changed = True
36
+
37
+ if changed:
38
+ return {"cols": self.cols, "rows": self.rows}
39
+
40
+ return None
41
+
42
+ def subscribe(self, client_id):
43
+ self.subscriptions.add(client_id)
44
+
45
+ def unsubscribe(self, client_id):
46
+ self.subscriptions.discard(client_id)
47
+
48
+ def send_messages(self, entries):
49
+ if not len(entries) or not len(self.subscriptions):
50
+ return
51
+
52
+ new_size = self.update_size()
53
+
54
+ for client_id in self.subscriptions.copy(): # prevent: Set changed size during iteration
55
+ if client_id not in self.server.sockets:
56
+ # Automatically unsub if the socket has disconnected
57
+ self.unsubscribe(client_id)
58
+ continue
59
+
60
+ self.server.send_sync("logs", {"entries": entries, "size": new_size}, client_id)
api_server/utils/file_operations.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List, Union, TypedDict, Literal
3
+ from typing_extensions import TypeGuard
4
+ class FileInfo(TypedDict):
5
+ name: str
6
+ path: str
7
+ type: Literal["file"]
8
+ size: int
9
+
10
+ class DirectoryInfo(TypedDict):
11
+ name: str
12
+ path: str
13
+ type: Literal["directory"]
14
+
15
+ FileSystemItem = Union[FileInfo, DirectoryInfo]
16
+
17
+ def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
18
+ return item["type"] == "file"
19
+
20
+ class FileSystemOperations:
21
+ @staticmethod
22
+ def walk_directory(directory: str) -> List[FileSystemItem]:
23
+ file_list: List[FileSystemItem] = []
24
+ for root, dirs, files in os.walk(directory):
25
+ for name in files:
26
+ file_path = os.path.join(root, name)
27
+ relative_path = os.path.relpath(file_path, directory)
28
+ file_list.append({
29
+ "name": name,
30
+ "path": relative_path,
31
+ "type": "file",
32
+ "size": os.path.getsize(file_path)
33
+ })
34
+ for name in dirs:
35
+ dir_path = os.path.join(root, name)
36
+ relative_path = os.path.relpath(dir_path, directory)
37
+ file_list.append({
38
+ "name": name,
39
+ "path": relative_path,
40
+ "type": "directory"
41
+ })
42
+ return file_list
app.py ADDED
@@ -0,0 +1,560 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import random
5
+ import sys
6
+ import subprocess
7
+ from typing import Sequence, Mapping, Any, Union
8
+ import torch
9
+ from tqdm import tqdm
10
+ import argparse
11
+ import json
12
+ import logging
13
+
14
+ import shutil
15
+ import gradio as gr
16
+ import spaces
17
+ from huggingface_hub import snapshot_download
18
+ import time
19
+ import traceback
20
+
21
+ from utils import get_path_after_pexel
22
+
23
+ LOCAL_GRADIO_TMP = os.path.abspath("./gradio_tmp")
24
+ os.makedirs(LOCAL_GRADIO_TMP, exist_ok=True)
25
+ os.environ["GRADIO_TEMP_DIR"] = LOCAL_GRADIO_TMP
26
+
27
+
28
+ HF_REPOS = {
29
+ "QingyanBai/Ditto_models": ["models_comfy/ditto_global_comfy.safetensors"],
30
+ "Kijai/WanVideo_comfy": [
31
+ "Wan2_1-T2V-14B_fp8_e4m3fn.safetensors",
32
+ "Wan21_CausVid_14B_T2V_lora_rank32_v2.safetensors",
33
+ "Wan2_1_VAE_bf16.safetensors",
34
+ "umt5-xxl-enc-bf16.safetensors",
35
+ ],
36
+ }
37
+
38
+ MODELS_ROOT = os.path.abspath(os.path.join(os.getcwd(), "models"))
39
+ PATHS = {
40
+ "diffusion_model": os.path.join(MODELS_ROOT, "diffusion_models"),
41
+ "vae_wan": os.path.join(MODELS_ROOT, "vae", "wan"),
42
+ "loras": os.path.join(MODELS_ROOT, "loras"),
43
+ "text_encoders": os.path.join(MODELS_ROOT, "text_encoders"),
44
+ }
45
+
46
+ REQUIRED_FILES = [
47
+ ("Wan2_1-T2V-14B_fp8_e4m3fn.safetensors", "diffusion_model"),
48
+ ("ditto_global_comfy.safetensors", "diffusion_model"),
49
+ ("Wan21_CausVid_14B_T2V_lora_rank32_v2.safetensors", "loras"),
50
+ ("Wan2_1_VAE_bf16.safetensors", "vae_wan"),
51
+ ("umt5-xxl-enc-bf16.safetensors", "text_encoders"),
52
+ ]
53
+
54
+ def ensure_dir(path: str) -> None:
55
+ os.makedirs(path, exist_ok=True)
56
+
57
+ def ensure_models() -> None:
58
+ for filename, key in REQUIRED_FILES:
59
+ target_dir = PATHS[key]
60
+ ensure_dir(target_dir)
61
+ target_path = os.path.join(target_dir, filename)
62
+ ready_flag = os.path.join(target_dir, f"{filename}.READY")
63
+
64
+ if os.path.exists(target_path) and os.path.getsize(target_path) > 0:
65
+ open(ready_flag, "a").close()
66
+ continue
67
+
68
+ repo_id = None
69
+ repo_file_path = None
70
+ for repo, files in HF_REPOS.items():
71
+ for file_path in files:
72
+ if filename in file_path:
73
+ repo_id = repo
74
+ repo_file_path = file_path
75
+ break
76
+ if repo_id:
77
+ break
78
+
79
+ if repo_id is None:
80
+ raise RuntimeError(f"Could not find repository for file: {filename}")
81
+
82
+ print(f"Downloading {filename} from {repo_id} to {target_dir} ...")
83
+
84
+ snapshot_download(
85
+ repo_id=repo_id,
86
+ local_dir=target_dir,
87
+ local_dir_use_symlinks=False,
88
+ allow_patterns=[repo_file_path],
89
+ token=os.getenv("HF_TOKEN", None),
90
+ )
91
+
92
+ if not os.path.exists(target_path):
93
+ found = []
94
+ for root, _, files in os.walk(target_dir):
95
+ for f in files:
96
+ if f == filename:
97
+ found.append(os.path.join(root, f))
98
+ if found:
99
+ src = found[0]
100
+ if src != target_path:
101
+ shutil.copy2(src, target_path)
102
+
103
+ if not os.path.exists(target_path):
104
+ raise RuntimeError(f"Failed to download required file: {filename}")
105
+
106
+ open(ready_flag, "w").close()
107
+ print(f"Downloaded and ready: {target_path}")
108
+ ensure_models()
109
+
110
+
111
+ def ensure_t5_tokenizer() -> None:
112
+ """
113
+ Ensure the local T5 tokenizer folder exists and contains valid files.
114
+ If missing or corrupted, download from 'google/umt5-xxl' and save locally
115
+ to the exact path expected by the WanVideo wrapper nodes.
116
+ """
117
+ try:
118
+ script_directory = os.path.dirname(os.path.abspath(__file__))
119
+ tokenizer_dir = os.path.join(
120
+ script_directory,
121
+ "custom_nodes",
122
+ "ComfyUI_WanVideoWrapper",
123
+ "configs",
124
+ "T5_tokenizer",
125
+ )
126
+ os.makedirs(tokenizer_dir, exist_ok=True)
127
+
128
+ required_files = [
129
+ "tokenizer.json",
130
+ "tokenizer_config.json",
131
+ "spiece.model",
132
+ "special_tokens_map.json",
133
+ ]
134
+
135
+ def is_valid(path: str) -> bool:
136
+ return os.path.exists(path) and os.path.getsize(path) > 0
137
+
138
+ all_ok = all(is_valid(os.path.join(tokenizer_dir, f)) for f in required_files)
139
+ if all_ok:
140
+ print(f"T5 tokenizer ready at: {tokenizer_dir}")
141
+ return
142
+
143
+ print(f"Preparing T5 tokenizer at: {tokenizer_dir} ...")
144
+ from transformers import AutoTokenizer
145
+
146
+ tok = AutoTokenizer.from_pretrained(
147
+ "google/umt5-xxl",
148
+ use_fast=True,
149
+ trust_remote_code=False,
150
+ )
151
+ tok.save_pretrained(tokenizer_dir)
152
+
153
+ # Re-check
154
+ all_ok = all(is_valid(os.path.join(tokenizer_dir, f)) for f in required_files)
155
+ if not all_ok:
156
+ raise RuntimeError("Tokenizer files not fully prepared after save_pretrained")
157
+ print("T5 tokenizer prepared successfully.")
158
+ except Exception as e:
159
+ print(f"Failed to prepare T5 tokenizer: {e}\n{traceback.format_exc()}")
160
+ raise
161
+
162
+
163
+ ensure_t5_tokenizer()
164
+
165
+
166
+ def setup_global_logging_filter():
167
+ class MemoryLogFilter(logging.Filter):
168
+ def filter(self, record):
169
+ msg = record.getMessage()
170
+ keywords = [
171
+ "Allocated memory:",
172
+ "Max allocated memory:",
173
+ "Max reserved memory:",
174
+ "memory=",
175
+ "max_memory=",
176
+ "max_reserved=",
177
+ "Block swap memory summary",
178
+ "Transformer blocks on",
179
+ "Total memory used by",
180
+ "Non-blocking memory transfer"
181
+ ]
182
+ return not any(kw in msg for kw in keywords)
183
+
184
+ logging.basicConfig(
185
+ level=logging.INFO,
186
+ format='%(asctime)s - %(levelname)s - %(message)s',
187
+ force=True
188
+ )
189
+ logging.getLogger().handlers[0].addFilter(MemoryLogFilter())
190
+
191
+
192
+ setup_global_logging_filter()
193
+
194
+
195
+ def tensor_to_video(video_tensor, output_path, fps=20, crf=20):
196
+ frames = video_tensor.detach().cpu().numpy()
197
+ if frames.dtype != np.uint8:
198
+ if frames.max() <= 1.0:
199
+ frames = (frames * 255).astype(np.uint8)
200
+ else:
201
+ frames = frames.astype(np.uint8)
202
+ num_frames, height, width, _ = frames.shape
203
+ command = [
204
+ 'ffmpeg',
205
+ '-y',
206
+ '-f', 'rawvideo',
207
+ '-vcodec', 'rawvideo',
208
+ '-pix_fmt', 'rgb24',
209
+ '-s', f'{width}x{height}',
210
+ '-r', str(fps),
211
+ '-i', '-',
212
+ '-c:v', 'libx264',
213
+ '-pix_fmt', 'yuv420p',
214
+ '-crf', str(crf),
215
+ '-preset', 'medium',
216
+ '-r', str(fps),
217
+ '-an',
218
+ output_path
219
+ ]
220
+
221
+ with subprocess.Popen(command, stdin=subprocess.PIPE, stderr=subprocess.PIPE) as proc:
222
+ for frame in frames:
223
+ proc.stdin.write(frame.tobytes())
224
+ proc.stdin.close()
225
+ if proc.stderr is not None:
226
+ proc.stderr.read()
227
+
228
+
229
+ def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
230
+ try:
231
+ return obj[index]
232
+ except KeyError:
233
+ return obj["result"][index]
234
+
235
+
236
+ def find_path(name: str, path: str = None) -> str:
237
+ if path is None:
238
+ path = os.getcwd()
239
+ if name in os.listdir(path):
240
+ path_name = os.path.join(path, name)
241
+ print(f"{name} found: {path_name}")
242
+ return path_name
243
+ parent_directory = os.path.dirname(path)
244
+ if parent_directory == path:
245
+ return None
246
+ return find_path(name, parent_directory)
247
+
248
+
249
+ def add_comfyui_directory_to_sys_path() -> None:
250
+ comfyui_path = find_path("ComfyUI")
251
+ if comfyui_path is not None and os.path.isdir(comfyui_path):
252
+ if comfyui_path not in sys.path:
253
+ sys.path.append(comfyui_path)
254
+ print(f"'{comfyui_path}' added to sys.path")
255
+
256
+
257
+ def add_extra_model_paths() -> None:
258
+ try:
259
+ from main import load_extra_path_config
260
+ except ImportError:
261
+ print(
262
+ "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
263
+ )
264
+ from utils.extra_config import load_extra_path_config
265
+
266
+ extra_model_paths = find_path("extra_model_paths.yaml")
267
+
268
+ if extra_model_paths is not None:
269
+ load_extra_path_config(extra_model_paths)
270
+ else:
271
+ print("Could not find the extra_model_paths config file.")
272
+
273
+
274
+ add_comfyui_directory_to_sys_path()
275
+ add_extra_model_paths()
276
+
277
+
278
+ def import_custom_nodes() -> None:
279
+ import asyncio
280
+ import execution
281
+ from nodes import init_extra_nodes
282
+ import server
283
+
284
+ if getattr(import_custom_nodes, "_initialized", False):
285
+ return
286
+
287
+ loop = asyncio.new_event_loop()
288
+ asyncio.set_event_loop(loop)
289
+ server_instance = server.PromptServer(loop)
290
+ execution.PromptQueue(server_instance)
291
+ init_extra_nodes()
292
+ import_custom_nodes._initialized = True
293
+
294
+
295
+ from nodes import NODE_CLASS_MAPPINGS
296
+
297
+ print(f"Loading custom nodes and models...")
298
+ import_custom_nodes()
299
+
300
+
301
+ @spaces.GPU()
302
+ def run_pipeline(vpath, prompt, width, height, fps, frame_count, outdir):
303
+ try:
304
+ import gc
305
+ # Clean memory before starting
306
+ gc.collect()
307
+ if torch.cuda.is_available():
308
+ torch.cuda.empty_cache()
309
+
310
+ os.makedirs(outdir, exist_ok=True)
311
+
312
+ with torch.inference_mode():
313
+ from custom_nodes.ComfyUI_WanVideoWrapper import nodes as wan_nodes
314
+ vhs_loadvideo = NODE_CLASS_MAPPINGS["VHS_LoadVideo"]()
315
+
316
+ # Set model and settings.
317
+ wanvideovacemodelselect = wan_nodes.WanVideoVACEModelSelect()
318
+ wanvideovacemodelselect_89 = wanvideovacemodelselect.getvacepath(
319
+ vace_model="ditto_global_comfy.safetensors"
320
+ )
321
+
322
+ wanvideoslg = wan_nodes.WanVideoSLG()
323
+ wanvideoslg_113 = wanvideoslg.process(
324
+ blocks="2",
325
+ start_percent=0.20000000000000004,
326
+ end_percent=0.7000000000000002,
327
+ )
328
+ wanvideovaeloader = wan_nodes.WanVideoVAELoader()
329
+ wanvideovaeloader_133 = wanvideovaeloader.loadmodel(
330
+ model_name="wan/Wan2_1_VAE_bf16.safetensors", precision="bf16"
331
+ )
332
+
333
+ loadwanvideot5textencoder = wan_nodes.LoadWanVideoT5TextEncoder()
334
+ loadwanvideot5textencoder_134 = loadwanvideot5textencoder.loadmodel(
335
+ model_name="umt5-xxl-enc-bf16.safetensors",
336
+ precision="bf16",
337
+ load_device="offload_device",
338
+ quantization="disabled",
339
+ )
340
+
341
+ wanvideoblockswap = wan_nodes.WanVideoBlockSwap()
342
+ wanvideoblockswap_137 = wanvideoblockswap.setargs(
343
+ blocks_to_swap=30,
344
+ offload_img_emb=False,
345
+ offload_txt_emb=False,
346
+ use_non_blocking=True,
347
+ vace_blocks_to_swap=0,
348
+ )
349
+
350
+ wanvideoloraselect = wan_nodes.WanVideoLoraSelect()
351
+ wanvideoloraselect_380 = wanvideoloraselect.getlorapath(
352
+ lora="Wan21_CausVid_14B_T2V_lora_rank32_v2.safetensors",
353
+ strength=1.0,
354
+ low_mem_load=False,
355
+ )
356
+
357
+ wanvideomodelloader = wan_nodes.WanVideoModelLoader()
358
+ imageresizekjv2 = NODE_CLASS_MAPPINGS["ImageResizeKJv2"]()
359
+ wanvideovaceencode = wan_nodes.WanVideoVACEEncode()
360
+ wanvideotextencode = wan_nodes.WanVideoTextEncode()
361
+ wanvideosampler = wan_nodes.WanVideoSampler()
362
+ wanvideodecode = wan_nodes.WanVideoDecode()
363
+ wanvideomodelloader_142 = wanvideomodelloader.loadmodel(
364
+ model="Wan2_1-T2V-14B_fp8_e4m3fn.safetensors",
365
+ base_precision="fp16",
366
+ quantization="disabled",
367
+ load_device="offload_device",
368
+ attention_mode="sdpa",
369
+ block_swap_args=get_value_at_index(wanvideoblockswap_137, 0),
370
+ lora=get_value_at_index(wanvideoloraselect_380, 0),
371
+ vace_model=get_value_at_index(wanvideovacemodelselect_89, 0),
372
+ )
373
+
374
+ fname = os.path.basename(vpath)
375
+ fname_clean = os.path.splitext(fname)[0]
376
+
377
+ vhs_loadvideo_70 = vhs_loadvideo.load_video(
378
+ video=vpath,
379
+ force_rate=24,
380
+ custom_width=width,
381
+ custom_height=height,
382
+ frame_load_cap=frame_count,
383
+ skip_first_frames=1,
384
+ select_every_nth=1,
385
+ format="AnimateDiff",
386
+ unique_id=16696422174153060213,
387
+ )
388
+
389
+ imageresizekjv2_205 = imageresizekjv2.resize(
390
+ width=width,
391
+ height=height,
392
+ upscale_method="area",
393
+ keep_proportion="resize",
394
+ pad_color="0, 0, 0",
395
+ crop_position="center",
396
+ divisible_by=8,
397
+ device="cpu",
398
+ image=get_value_at_index(vhs_loadvideo_70, 0),
399
+ )
400
+ wanvideovaceencode_29 = wanvideovaceencode.process(
401
+ width=width,
402
+ height=height,
403
+ num_frames=frame_count,
404
+ strength=0.9750000000000002,
405
+ vace_start_percent=0,
406
+ vace_end_percent=1,
407
+ tiled_vae=False,
408
+ vae=get_value_at_index(wanvideovaeloader_133, 0),
409
+ input_frames=get_value_at_index(imageresizekjv2_205, 0),
410
+ )
411
+
412
+ wanvideotextencode_148 = wanvideotextencode.process(
413
+ positive_prompt=prompt,
414
+ negative_prompt="flickering artifact, jpg artifacts, compression, distortion, morphing, low-res, fake, oversaturated, overexposed, over bright, strange behavior, distorted limbs, unnatural motion, unrealistic anatomy, glitch, extra limbs,",
415
+ force_offload=True,
416
+ t5=get_value_at_index(loadwanvideot5textencoder_134, 0),
417
+ model_to_offload=get_value_at_index(wanvideomodelloader_142, 0),
418
+ )
419
+
420
+ # Clean memory before sampling (most memory-intensive step)
421
+ gc.collect()
422
+ if torch.cuda.is_available():
423
+ torch.cuda.empty_cache()
424
+
425
+ wanvideosampler_2 = wanvideosampler.process(
426
+ steps=4,
427
+ cfg=1.2000000000000002,
428
+ shift=2.0000000000000004,
429
+ seed=random.randint(1, 2 ** 64),
430
+ force_offload=True,
431
+ scheduler="unipc",
432
+ riflex_freq_index=0,
433
+ denoise_strength=1,
434
+ batched_cfg=False,
435
+ rope_function="comfy",
436
+ model=get_value_at_index(wanvideomodelloader_142, 0),
437
+ image_embeds=get_value_at_index(wanvideovaceencode_29, 0),
438
+ text_embeds=get_value_at_index(wanvideotextencode_148, 0),
439
+ slg_args=get_value_at_index(wanvideoslg_113, 0),
440
+ )
441
+ res = wanvideodecode.decode(
442
+ enable_vae_tiling=False,
443
+ tile_x=272,
444
+ tile_y=272,
445
+ tile_stride_x=144,
446
+ tile_stride_y=128,
447
+ vae=get_value_at_index(wanvideovaeloader_133, 0),
448
+ samples=get_value_at_index(wanvideosampler_2, 0),
449
+ )
450
+ save_path = os.path.join(outdir, f'{fname_clean}_edit.mp4')
451
+ tensor_to_video(res[0], save_path, fps=fps)
452
+
453
+ # Clean up memory after generation
454
+ del res
455
+ gc.collect()
456
+ if torch.cuda.is_available():
457
+ torch.cuda.empty_cache()
458
+
459
+ print(f"Done. Saved to: {save_path}")
460
+ return save_path
461
+ except Exception as e:
462
+ err = f"Error: {e}\n{traceback.format_exc()}"
463
+ print(err)
464
+ # Clean memory on error too
465
+ gc.collect()
466
+ if torch.cuda.is_available():
467
+ torch.cuda.empty_cache()
468
+ raise
469
+
470
+
471
+ @spaces.GPU()
472
+ def gradio_infer(vfile, prompt, width, height, fps, frame_count, progress=gr.Progress(track_tqdm=True)):
473
+ if vfile is None:
474
+ return None, "Please upload the video!", "\n".join(logs)
475
+
476
+ vpath = vfile if isinstance(vfile, str) else vfile.name
477
+ if not os.path.exists(vpath) and hasattr(vfile, "save"):
478
+ os.makedirs("uploads", exist_ok=True)
479
+ vpath = os.path.join("uploads", os.path.basename(vfile.name))
480
+ vfile.save(vpath)
481
+
482
+ outdir = "results"
483
+ os.makedirs(outdir, exist_ok=True)
484
+
485
+ save_path = run_pipeline(
486
+ vpath=vpath,
487
+ prompt=prompt,
488
+ width=int(width),
489
+ height=int(height),
490
+ fps=int(fps),
491
+ frame_count=int(frame_count),
492
+ outdir=outdir,
493
+ )
494
+ return save_path
495
+
496
+
497
+ def build_interface():
498
+ with gr.Blocks(title="Ditto") as demo:
499
+ gr.Markdown(
500
+ """# Ditto: Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset
501
+
502
+ <div style="font-size: 1.3rem; line-height: 1.6; margin-bottom: 1rem;">
503
+ <a href="https://arxiv.org/abs/2510.15742" target="_blank">📄 Paper</a>
504
+ &nbsp; | &nbsp;
505
+ <a href="https://ezioby.github.io/Ditto_page/" target="_blank">🌐 Project Page</a>
506
+ &nbsp; | &nbsp;
507
+ <a href="https://github.com/EzioBy/Ditto/" target="_blank"> 💻 Github Code </a>
508
+ &nbsp; | &nbsp;
509
+ <a href="https://huggingface.co/QingyanBai/Ditto_models/tree/main" target="_blank">📦 Model Weights</a>
510
+ &nbsp; | &nbsp;
511
+ <a href="https://huggingface.co/datasets/QingyanBai/Ditto-1M" target="_blank">📊 Dataset</a>
512
+ </div>
513
+
514
+ <b>Note1:</b> The backend of this demo is comfy, please note that due to the use of quantized and distilled models, there may be some quality degradation.
515
+ <b>Note2:</b> Considering the limited memory, please try test cases with lower resolution and frame count, otherwise it may cause out of memory error.
516
+ If you like this project, please consider <a href="https://github.com/EzioBy/Ditto/" target="_blank">starring the repo</a> to motivate us. Thank you!
517
+ """
518
+ )
519
+
520
+ with gr.Column():
521
+ with gr.Row():
522
+ vfile = gr.Video(label="Input Video", value=os.path.join("input", "dasha.mp4"),
523
+ sources="upload", interactive=True)
524
+ out_video = gr.Video(label="Result")
525
+ prompt = gr.Textbox(label="Editing Instruction", value="Make it in the style of Japanese anime")
526
+ with gr.Row():
527
+ width = gr.Number(label="Width", value=576, precision=0)
528
+ height = gr.Number(label="Height", value=324, precision=0)
529
+ fps = gr.Number(label="FPS", value=20, precision=0)
530
+ frame_count = gr.Number(label="Frame Count", value=49, precision=0)
531
+ run_btn = gr.Button("Run", variant="primary")
532
+
533
+ run_btn.click(
534
+ fn=gradio_infer,
535
+ inputs=[vfile, prompt, width, height, fps, frame_count],
536
+ outputs=[out_video]
537
+ )
538
+ examples = [
539
+ [
540
+ os.path.join("input", "dasha.mp4"),
541
+ "Add some fire and flame to the background",
542
+ 576, 324, 20, 49
543
+ ],
544
+ [
545
+ os.path.join("input", "dasha.mp4"),
546
+ "Make it in the style of pencil sketch",
547
+ 576, 324, 20, 49
548
+ ],
549
+ ]
550
+ gr.Examples(
551
+ examples=examples,
552
+ inputs=[vfile, prompt, width, height, fps, frame_count],
553
+ label="Examples"
554
+ )
555
+ return demo
556
+
557
+
558
+ if __name__ == "__main__":
559
+ demo = build_interface()
560
+ demo.launch()
app/__init__.py ADDED
File without changes
app/app_settings.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from aiohttp import web
4
+ import logging
5
+
6
+
7
+ class AppSettings():
8
+ def __init__(self, user_manager):
9
+ self.user_manager = user_manager
10
+
11
+ def get_settings(self, request):
12
+ try:
13
+ file = self.user_manager.get_request_user_filepath(
14
+ request,
15
+ "comfy.settings.json"
16
+ )
17
+ except KeyError as e:
18
+ logging.error("User settings not found.")
19
+ raise web.HTTPUnauthorized() from e
20
+ if os.path.isfile(file):
21
+ try:
22
+ with open(file) as f:
23
+ return json.load(f)
24
+ except:
25
+ logging.error(f"The user settings file is corrupted: {file}")
26
+ return {}
27
+ else:
28
+ return {}
29
+
30
+ def save_settings(self, request, settings):
31
+ file = self.user_manager.get_request_user_filepath(
32
+ request, "comfy.settings.json")
33
+ with open(file, "w") as f:
34
+ f.write(json.dumps(settings, indent=4))
35
+
36
+ def add_routes(self, routes):
37
+ @routes.get("/settings")
38
+ async def get_settings(request):
39
+ return web.json_response(self.get_settings(request))
40
+
41
+ @routes.get("/settings/{id}")
42
+ async def get_setting(request):
43
+ value = None
44
+ settings = self.get_settings(request)
45
+ setting_id = request.match_info.get("id", None)
46
+ if setting_id and setting_id in settings:
47
+ value = settings[setting_id]
48
+ return web.json_response(value)
49
+
50
+ @routes.post("/settings")
51
+ async def post_settings(request):
52
+ settings = self.get_settings(request)
53
+ new_settings = await request.json()
54
+ self.save_settings(request, {**settings, **new_settings})
55
+ return web.Response(status=200)
56
+
57
+ @routes.post("/settings/{id}")
58
+ async def post_setting(request):
59
+ setting_id = request.match_info.get("id", None)
60
+ if not setting_id:
61
+ return web.Response(status=400)
62
+ settings = self.get_settings(request)
63
+ settings[setting_id] = await request.json()
64
+ self.save_settings(request, settings)
65
+ return web.Response(status=200)
app/custom_node_manager.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ import folder_paths
5
+ import glob
6
+ from aiohttp import web
7
+ import json
8
+ import logging
9
+ from functools import lru_cache
10
+
11
+ from utils.json_util import merge_json_recursive
12
+
13
+
14
+ # Extra locale files to load into main.json
15
+ EXTRA_LOCALE_FILES = [
16
+ "nodeDefs.json",
17
+ "commands.json",
18
+ "settings.json",
19
+ ]
20
+
21
+
22
+ def safe_load_json_file(file_path: str) -> dict:
23
+ if not os.path.exists(file_path):
24
+ return {}
25
+
26
+ try:
27
+ with open(file_path, "r", encoding="utf-8") as f:
28
+ return json.load(f)
29
+ except json.JSONDecodeError:
30
+ logging.error(f"Error loading {file_path}")
31
+ return {}
32
+
33
+
34
+ class CustomNodeManager:
35
+ @lru_cache(maxsize=1)
36
+ def build_translations(self):
37
+ """Load all custom nodes translations during initialization. Translations are
38
+ expected to be loaded from `locales/` folder.
39
+
40
+ The folder structure is expected to be the following:
41
+ - custom_nodes/
42
+ - custom_node_1/
43
+ - locales/
44
+ - en/
45
+ - main.json
46
+ - commands.json
47
+ - settings.json
48
+
49
+ returned translations are expected to be in the following format:
50
+ {
51
+ "en": {
52
+ "nodeDefs": {...},
53
+ "commands": {...},
54
+ "settings": {...},
55
+ ...{other main.json keys}
56
+ }
57
+ }
58
+ """
59
+
60
+ translations = {}
61
+
62
+ for folder in folder_paths.get_folder_paths("custom_nodes"):
63
+ # Sort glob results for deterministic ordering
64
+ for custom_node_dir in sorted(glob.glob(os.path.join(folder, "*/"))):
65
+ locales_dir = os.path.join(custom_node_dir, "locales")
66
+ if not os.path.exists(locales_dir):
67
+ continue
68
+
69
+ for lang_dir in glob.glob(os.path.join(locales_dir, "*/")):
70
+ lang_code = os.path.basename(os.path.dirname(lang_dir))
71
+
72
+ if lang_code not in translations:
73
+ translations[lang_code] = {}
74
+
75
+ # Load main.json
76
+ main_file = os.path.join(lang_dir, "main.json")
77
+ node_translations = safe_load_json_file(main_file)
78
+
79
+ # Load extra locale files
80
+ for extra_file in EXTRA_LOCALE_FILES:
81
+ extra_file_path = os.path.join(lang_dir, extra_file)
82
+ key = extra_file.split(".")[0]
83
+ json_data = safe_load_json_file(extra_file_path)
84
+ if json_data:
85
+ node_translations[key] = json_data
86
+
87
+ if node_translations:
88
+ translations[lang_code] = merge_json_recursive(
89
+ translations[lang_code], node_translations
90
+ )
91
+
92
+ return translations
93
+
94
+ def add_routes(self, routes, webapp, loadedModules):
95
+
96
+ example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
97
+
98
+ @routes.get("/workflow_templates")
99
+ async def get_workflow_templates(request):
100
+ """Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
101
+
102
+ files = []
103
+
104
+ for folder in folder_paths.get_folder_paths("custom_nodes"):
105
+ for folder_name in example_workflow_folder_names:
106
+ pattern = os.path.join(folder, f"*/{folder_name}/*.json")
107
+ matched_files = glob.glob(pattern)
108
+ files.extend(matched_files)
109
+
110
+ workflow_templates_dict = (
111
+ {}
112
+ ) # custom_nodes folder name -> example workflow names
113
+ for file in files:
114
+ custom_nodes_name = os.path.basename(
115
+ os.path.dirname(os.path.dirname(file))
116
+ )
117
+ workflow_name = os.path.splitext(os.path.basename(file))[0]
118
+ workflow_templates_dict.setdefault(custom_nodes_name, []).append(
119
+ workflow_name
120
+ )
121
+ return web.json_response(workflow_templates_dict)
122
+
123
+ # Serve workflow templates from custom nodes.
124
+ for module_name, module_dir in loadedModules:
125
+ for folder_name in example_workflow_folder_names:
126
+ workflows_dir = os.path.join(module_dir, folder_name)
127
+
128
+ if os.path.exists(workflows_dir):
129
+ if folder_name != "example_workflows":
130
+ logging.debug(
131
+ "Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
132
+ folder_name, module_name)
133
+
134
+ webapp.add_routes(
135
+ [
136
+ web.static(
137
+ "/api/workflow_templates/" + module_name, workflows_dir
138
+ )
139
+ ]
140
+ )
141
+
142
+ @routes.get("/i18n")
143
+ async def get_i18n(request):
144
+ """Returns translations from all custom nodes' locales folders."""
145
+ return web.json_response(self.build_translations())
app/database/db.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import shutil
4
+ from app.logger import log_startup_warning
5
+ from utils.install_util import get_missing_requirements_message
6
+ from comfy.cli_args import args
7
+
8
+ _DB_AVAILABLE = False
9
+ Session = None
10
+
11
+
12
+ try:
13
+ from alembic import command
14
+ from alembic.config import Config
15
+ from alembic.runtime.migration import MigrationContext
16
+ from alembic.script import ScriptDirectory
17
+ from sqlalchemy import create_engine
18
+ from sqlalchemy.orm import sessionmaker
19
+
20
+ _DB_AVAILABLE = True
21
+ except ImportError as e:
22
+ log_startup_warning(
23
+ f"""
24
+ ------------------------------------------------------------------------
25
+ Error importing dependencies: {e}
26
+ {get_missing_requirements_message()}
27
+ This error is happening because ComfyUI now uses a local sqlite database.
28
+ ------------------------------------------------------------------------
29
+ """.strip()
30
+ )
31
+
32
+
33
+ def dependencies_available():
34
+ """
35
+ Temporary function to check if the dependencies are available
36
+ """
37
+ return _DB_AVAILABLE
38
+
39
+
40
+ def can_create_session():
41
+ """
42
+ Temporary function to check if the database is available to create a session
43
+ During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
44
+ """
45
+ return dependencies_available() and Session is not None
46
+
47
+
48
+ def get_alembic_config():
49
+ root_path = os.path.join(os.path.dirname(__file__), "../..")
50
+ config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
51
+ scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
52
+
53
+ config = Config(config_path)
54
+ config.set_main_option("script_location", scripts_path)
55
+ config.set_main_option("sqlalchemy.url", args.database_url)
56
+
57
+ return config
58
+
59
+
60
+ def get_db_path():
61
+ url = args.database_url
62
+ if url.startswith("sqlite:///"):
63
+ return url.split("///")[1]
64
+ else:
65
+ raise ValueError(f"Unsupported database URL '{url}'.")
66
+
67
+
68
+ def init_db():
69
+ db_url = args.database_url
70
+ logging.debug(f"Database URL: {db_url}")
71
+ db_path = get_db_path()
72
+ db_exists = os.path.exists(db_path)
73
+
74
+ config = get_alembic_config()
75
+
76
+ # Check if we need to upgrade
77
+ engine = create_engine(db_url)
78
+ conn = engine.connect()
79
+
80
+ context = MigrationContext.configure(conn)
81
+ current_rev = context.get_current_revision()
82
+
83
+ script = ScriptDirectory.from_config(config)
84
+ target_rev = script.get_current_head()
85
+
86
+ if target_rev is None:
87
+ logging.warning("No target revision found.")
88
+ elif current_rev != target_rev:
89
+ # Backup the database pre upgrade
90
+ backup_path = db_path + ".bkp"
91
+ if db_exists:
92
+ shutil.copy(db_path, backup_path)
93
+ else:
94
+ backup_path = None
95
+
96
+ try:
97
+ command.upgrade(config, target_rev)
98
+ logging.info(f"Database upgraded from {current_rev} to {target_rev}")
99
+ except Exception as e:
100
+ if backup_path:
101
+ # Restore the database from backup if upgrade fails
102
+ shutil.copy(backup_path, db_path)
103
+ os.remove(backup_path)
104
+ logging.exception("Error upgrading database: ")
105
+ raise e
106
+
107
+ global Session
108
+ Session = sessionmaker(bind=engine)
109
+
110
+
111
+ def create_session():
112
+ return Session()
app/database/models.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sqlalchemy.orm import declarative_base
2
+
3
+ Base = declarative_base()
4
+
5
+
6
+ def to_dict(obj):
7
+ fields = obj.__table__.columns.keys()
8
+ return {
9
+ field: (val.to_dict() if hasattr(val, "to_dict") else val)
10
+ for field in fields
11
+ if (val := getattr(obj, field))
12
+ }
13
+
14
+ # TODO: Define models here
app/frontend_management.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import argparse
3
+ import logging
4
+ import os
5
+ import re
6
+ import sys
7
+ import tempfile
8
+ import zipfile
9
+ import importlib
10
+ from dataclasses import dataclass
11
+ from functools import cached_property
12
+ from pathlib import Path
13
+ from typing import TypedDict, Optional
14
+ from importlib.metadata import version
15
+
16
+ import requests
17
+ from typing_extensions import NotRequired
18
+
19
+ from utils.install_util import get_missing_requirements_message, requirements_path
20
+
21
+ from comfy.cli_args import DEFAULT_VERSION_STRING
22
+ import app.logger
23
+
24
+
25
+ def frontend_install_warning_message():
26
+ return f"""
27
+ {get_missing_requirements_message()}
28
+
29
+ This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
30
+ """.strip()
31
+
32
+
33
+ def check_frontend_version():
34
+ """Check if the frontend version is up to date."""
35
+
36
+ def parse_version(version: str) -> tuple[int, int, int]:
37
+ return tuple(map(int, version.split(".")))
38
+
39
+ try:
40
+ frontend_version_str = version("comfyui-frontend-package")
41
+ frontend_version = parse_version(frontend_version_str)
42
+ with open(requirements_path, "r", encoding="utf-8") as f:
43
+ required_frontend = parse_version(f.readline().split("=")[-1])
44
+ if frontend_version < required_frontend:
45
+ app.logger.log_startup_warning(
46
+ f"""
47
+ ________________________________________________________________________
48
+ WARNING WARNING WARNING WARNING WARNING
49
+
50
+ Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
51
+
52
+ {frontend_install_warning_message()}
53
+ ________________________________________________________________________
54
+ """.strip()
55
+ )
56
+ else:
57
+ logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
58
+ except Exception as e:
59
+ logging.error(f"Failed to check frontend version: {e}")
60
+
61
+
62
+ REQUEST_TIMEOUT = 10 # seconds
63
+
64
+
65
+ class Asset(TypedDict):
66
+ url: str
67
+
68
+
69
+ class Release(TypedDict):
70
+ id: int
71
+ tag_name: str
72
+ name: str
73
+ prerelease: bool
74
+ created_at: str
75
+ published_at: str
76
+ body: str
77
+ assets: NotRequired[list[Asset]]
78
+
79
+
80
+ @dataclass
81
+ class FrontEndProvider:
82
+ owner: str
83
+ repo: str
84
+
85
+ @property
86
+ def folder_name(self) -> str:
87
+ return f"{self.owner}_{self.repo}"
88
+
89
+ @property
90
+ def release_url(self) -> str:
91
+ return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
92
+
93
+ @cached_property
94
+ def all_releases(self) -> list[Release]:
95
+ releases = []
96
+ api_url = self.release_url
97
+ while api_url:
98
+ response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
99
+ response.raise_for_status() # Raises an HTTPError if the response was an error
100
+ releases.extend(response.json())
101
+ # GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
102
+ if "next" in response.links:
103
+ api_url = response.links["next"]["url"]
104
+ else:
105
+ api_url = None
106
+ return releases
107
+
108
+ @cached_property
109
+ def latest_release(self) -> Release:
110
+ latest_release_url = f"{self.release_url}/latest"
111
+ response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
112
+ response.raise_for_status() # Raises an HTTPError if the response was an error
113
+ return response.json()
114
+
115
+ @cached_property
116
+ def latest_prerelease(self) -> Release:
117
+ """Get the latest pre-release version - even if it's older than the latest release"""
118
+ release = [release for release in self.all_releases if release["prerelease"]]
119
+
120
+ if not release:
121
+ raise ValueError("No pre-releases found")
122
+
123
+ # GitHub returns releases in reverse chronological order, so first is latest
124
+ return release[0]
125
+
126
+ def get_release(self, version: str) -> Release:
127
+ if version == "latest":
128
+ return self.latest_release
129
+ elif version == "prerelease":
130
+ return self.latest_prerelease
131
+ else:
132
+ for release in self.all_releases:
133
+ if release["tag_name"] in [version, f"v{version}"]:
134
+ return release
135
+ raise ValueError(f"Version {version} not found in releases")
136
+
137
+
138
+ def download_release_asset_zip(release: Release, destination_path: str) -> None:
139
+ """Download dist.zip from github release."""
140
+ asset_url = None
141
+ for asset in release.get("assets", []):
142
+ if asset["name"] == "dist.zip":
143
+ asset_url = asset["url"]
144
+ break
145
+
146
+ if not asset_url:
147
+ raise ValueError("dist.zip not found in the release assets")
148
+
149
+ # Use a temporary file to download the zip content
150
+ with tempfile.TemporaryFile() as tmp_file:
151
+ headers = {"Accept": "application/octet-stream"}
152
+ response = requests.get(
153
+ asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
154
+ )
155
+ response.raise_for_status() # Ensure we got a successful response
156
+
157
+ # Write the content to the temporary file
158
+ tmp_file.write(response.content)
159
+
160
+ # Go back to the beginning of the temporary file
161
+ tmp_file.seek(0)
162
+
163
+ # Extract the zip file content to the destination path
164
+ with zipfile.ZipFile(tmp_file, "r") as zip_ref:
165
+ zip_ref.extractall(destination_path)
166
+
167
+
168
+ class FrontendManager:
169
+ CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
170
+
171
+ @classmethod
172
+ def default_frontend_path(cls) -> str:
173
+ try:
174
+ import comfyui_frontend_package
175
+
176
+ return str(importlib.resources.files(comfyui_frontend_package) / "static")
177
+ except ImportError:
178
+ logging.error(
179
+ f"""
180
+ ********** ERROR ***********
181
+
182
+ comfyui-frontend-package is not installed.
183
+
184
+ {frontend_install_warning_message()}
185
+
186
+ ********** ERROR ***********
187
+ """.strip()
188
+ )
189
+ sys.exit(-1)
190
+
191
+ @classmethod
192
+ def templates_path(cls) -> str:
193
+ try:
194
+ import comfyui_workflow_templates
195
+
196
+ return str(
197
+ importlib.resources.files(comfyui_workflow_templates) / "templates"
198
+ )
199
+ except ImportError:
200
+ logging.error(
201
+ f"""
202
+ ********** ERROR ***********
203
+
204
+ comfyui-workflow-templates is not installed.
205
+
206
+ {frontend_install_warning_message()}
207
+
208
+ ********** ERROR ***********
209
+ """.strip()
210
+ )
211
+
212
+ @classmethod
213
+ def embedded_docs_path(cls) -> str:
214
+ """Get the path to embedded documentation"""
215
+ try:
216
+ import comfyui_embedded_docs
217
+
218
+ return str(
219
+ importlib.resources.files(comfyui_embedded_docs) / "docs"
220
+ )
221
+ except ImportError:
222
+ logging.info("comfyui-embedded-docs package not found")
223
+ return None
224
+
225
+ @classmethod
226
+ def parse_version_string(cls, value: str) -> tuple[str, str, str]:
227
+ """
228
+ Args:
229
+ value (str): The version string to parse.
230
+
231
+ Returns:
232
+ tuple[str, str]: A tuple containing provider name and version.
233
+
234
+ Raises:
235
+ argparse.ArgumentTypeError: If the version string is invalid.
236
+ """
237
+ VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
238
+ match_result = re.match(VERSION_PATTERN, value)
239
+ if match_result is None:
240
+ raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
241
+
242
+ return match_result.group(1), match_result.group(2), match_result.group(3)
243
+
244
+ @classmethod
245
+ def init_frontend_unsafe(
246
+ cls, version_string: str, provider: Optional[FrontEndProvider] = None
247
+ ) -> str:
248
+ """
249
+ Initializes the frontend for the specified version.
250
+
251
+ Args:
252
+ version_string (str): The version string.
253
+ provider (FrontEndProvider, optional): The provider to use. Defaults to None.
254
+
255
+ Returns:
256
+ str: The path to the initialized frontend.
257
+
258
+ Raises:
259
+ Exception: If there is an error during the initialization process.
260
+ main error source might be request timeout or invalid URL.
261
+ """
262
+ if version_string == DEFAULT_VERSION_STRING:
263
+ check_frontend_version()
264
+ return cls.default_frontend_path()
265
+
266
+ repo_owner, repo_name, version = cls.parse_version_string(version_string)
267
+
268
+ if version.startswith("v"):
269
+ expected_path = str(
270
+ Path(cls.CUSTOM_FRONTENDS_ROOT)
271
+ / f"{repo_owner}_{repo_name}"
272
+ / version.lstrip("v")
273
+ )
274
+ if os.path.exists(expected_path):
275
+ logging.info(
276
+ f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
277
+ )
278
+ return expected_path
279
+
280
+ logging.info(
281
+ f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
282
+ )
283
+
284
+ provider = provider or FrontEndProvider(repo_owner, repo_name)
285
+ release = provider.get_release(version)
286
+
287
+ semantic_version = release["tag_name"].lstrip("v")
288
+ web_root = str(
289
+ Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
290
+ )
291
+ if not os.path.exists(web_root):
292
+ try:
293
+ os.makedirs(web_root, exist_ok=True)
294
+ logging.info(
295
+ "Downloading frontend(%s) version(%s) to (%s)",
296
+ provider.folder_name,
297
+ semantic_version,
298
+ web_root,
299
+ )
300
+ logging.debug(release)
301
+ download_release_asset_zip(release, destination_path=web_root)
302
+ finally:
303
+ # Clean up the directory if it is empty, i.e. the download failed
304
+ if not os.listdir(web_root):
305
+ os.rmdir(web_root)
306
+
307
+ return web_root
308
+
309
+ @classmethod
310
+ def init_frontend(cls, version_string: str) -> str:
311
+ """
312
+ Initializes the frontend with the specified version string.
313
+
314
+ Args:
315
+ version_string (str): The version string to initialize the frontend with.
316
+
317
+ Returns:
318
+ str: The path of the initialized frontend.
319
+ """
320
+ try:
321
+ return cls.init_frontend_unsafe(version_string)
322
+ except Exception as e:
323
+ logging.error("Failed to initialize frontend: %s", e)
324
+ logging.info("Falling back to the default frontend.")
325
+ check_frontend_version()
326
+ return cls.default_frontend_path()
app/logger.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from datetime import datetime
3
+ import io
4
+ import logging
5
+ import sys
6
+ import threading
7
+
8
+ logs = None
9
+ stdout_interceptor = None
10
+ stderr_interceptor = None
11
+
12
+
13
+ class LogInterceptor(io.TextIOWrapper):
14
+ def __init__(self, stream, *args, **kwargs):
15
+ buffer = stream.buffer
16
+ encoding = stream.encoding
17
+ super().__init__(buffer, *args, **kwargs, encoding=encoding, line_buffering=stream.line_buffering)
18
+ self._lock = threading.Lock()
19
+ self._flush_callbacks = []
20
+ self._logs_since_flush = []
21
+
22
+ def write(self, data):
23
+ entry = {"t": datetime.now().isoformat(), "m": data}
24
+ with self._lock:
25
+ self._logs_since_flush.append(entry)
26
+
27
+ # Simple handling for cr to overwrite the last output if it isnt a full line
28
+ # else logs just get full of progress messages
29
+ if isinstance(data, str) and data.startswith("\r") and not logs[-1]["m"].endswith("\n"):
30
+ logs.pop()
31
+ logs.append(entry)
32
+ super().write(data)
33
+
34
+ def flush(self):
35
+ super().flush()
36
+ for cb in self._flush_callbacks:
37
+ cb(self._logs_since_flush)
38
+ self._logs_since_flush = []
39
+
40
+ def on_flush(self, callback):
41
+ self._flush_callbacks.append(callback)
42
+
43
+
44
+ def get_logs():
45
+ return logs
46
+
47
+
48
+ def on_flush(callback):
49
+ if stdout_interceptor is not None:
50
+ stdout_interceptor.on_flush(callback)
51
+ if stderr_interceptor is not None:
52
+ stderr_interceptor.on_flush(callback)
53
+
54
+ def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool = False):
55
+ global logs
56
+ if logs:
57
+ return
58
+
59
+ # Override output streams and log to buffer
60
+ logs = deque(maxlen=capacity)
61
+
62
+ global stdout_interceptor
63
+ global stderr_interceptor
64
+ stdout_interceptor = sys.stdout = LogInterceptor(sys.stdout)
65
+ stderr_interceptor = sys.stderr = LogInterceptor(sys.stderr)
66
+
67
+ # Setup default global logger
68
+ logger = logging.getLogger()
69
+ logger.setLevel(log_level)
70
+
71
+ stream_handler = logging.StreamHandler()
72
+ stream_handler.setFormatter(logging.Formatter("%(message)s"))
73
+
74
+ if use_stdout:
75
+ # Only errors and critical to stderr
76
+ stream_handler.addFilter(lambda record: not record.levelno < logging.ERROR)
77
+
78
+ # Lesser to stdout
79
+ stdout_handler = logging.StreamHandler(sys.stdout)
80
+ stdout_handler.setFormatter(logging.Formatter("%(message)s"))
81
+ stdout_handler.addFilter(lambda record: record.levelno < logging.ERROR)
82
+ logger.addHandler(stdout_handler)
83
+
84
+ logger.addHandler(stream_handler)
85
+
86
+
87
+ STARTUP_WARNINGS = []
88
+
89
+
90
+ def log_startup_warning(msg):
91
+ logging.warning(msg)
92
+ STARTUP_WARNINGS.append(msg)
93
+
94
+
95
+ def print_startup_warnings():
96
+ for s in STARTUP_WARNINGS:
97
+ logging.warning(s)
98
+ STARTUP_WARNINGS.clear()
app/model_manager.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ import base64
5
+ import json
6
+ import time
7
+ import logging
8
+ import folder_paths
9
+ import glob
10
+ import comfy.utils
11
+ from aiohttp import web
12
+ from PIL import Image
13
+ from io import BytesIO
14
+ from folder_paths import map_legacy, filter_files_extensions, filter_files_content_types
15
+
16
+
17
+ class ModelFileManager:
18
+ def __init__(self) -> None:
19
+ self.cache: dict[str, tuple[list[dict], dict[str, float], float]] = {}
20
+
21
+ def get_cache(self, key: str, default=None) -> tuple[list[dict], dict[str, float], float] | None:
22
+ return self.cache.get(key, default)
23
+
24
+ def set_cache(self, key: str, value: tuple[list[dict], dict[str, float], float]):
25
+ self.cache[key] = value
26
+
27
+ def clear_cache(self):
28
+ self.cache.clear()
29
+
30
+ def add_routes(self, routes):
31
+ # NOTE: This is an experiment to replace `/models`
32
+ @routes.get("/experiment/models")
33
+ async def get_model_folders(request):
34
+ model_types = list(folder_paths.folder_names_and_paths.keys())
35
+ folder_black_list = ["configs", "custom_nodes"]
36
+ output_folders: list[dict] = []
37
+ for folder in model_types:
38
+ if folder in folder_black_list:
39
+ continue
40
+ output_folders.append({"name": folder, "folders": folder_paths.get_folder_paths(folder)})
41
+ return web.json_response(output_folders)
42
+
43
+ # NOTE: This is an experiment to replace `/models/{folder}`
44
+ @routes.get("/experiment/models/{folder}")
45
+ async def get_all_models(request):
46
+ folder = request.match_info.get("folder", None)
47
+ if not folder in folder_paths.folder_names_and_paths:
48
+ return web.Response(status=404)
49
+ files = self.get_model_file_list(folder)
50
+ return web.json_response(files)
51
+
52
+ @routes.get("/experiment/models/preview/{folder}/{path_index}/{filename:.*}")
53
+ async def get_model_preview(request):
54
+ folder_name = request.match_info.get("folder", None)
55
+ path_index = int(request.match_info.get("path_index", None))
56
+ filename = request.match_info.get("filename", None)
57
+
58
+ if not folder_name in folder_paths.folder_names_and_paths:
59
+ return web.Response(status=404)
60
+
61
+ folders = folder_paths.folder_names_and_paths[folder_name]
62
+ folder = folders[0][path_index]
63
+ full_filename = os.path.join(folder, filename)
64
+
65
+ previews = self.get_model_previews(full_filename)
66
+ default_preview = previews[0] if len(previews) > 0 else None
67
+ if default_preview is None or (isinstance(default_preview, str) and not os.path.isfile(default_preview)):
68
+ return web.Response(status=404)
69
+
70
+ try:
71
+ with Image.open(default_preview) as img:
72
+ img_bytes = BytesIO()
73
+ img.save(img_bytes, format="WEBP")
74
+ img_bytes.seek(0)
75
+ return web.Response(body=img_bytes.getvalue(), content_type="image/webp")
76
+ except:
77
+ return web.Response(status=404)
78
+
79
+ def get_model_file_list(self, folder_name: str):
80
+ folder_name = map_legacy(folder_name)
81
+ folders = folder_paths.folder_names_and_paths[folder_name]
82
+ output_list: list[dict] = []
83
+
84
+ for index, folder in enumerate(folders[0]):
85
+ if not os.path.isdir(folder):
86
+ continue
87
+ out = self.cache_model_file_list_(folder)
88
+ if out is None:
89
+ out = self.recursive_search_models_(folder, index)
90
+ self.set_cache(folder, out)
91
+ output_list.extend(out[0])
92
+
93
+ return output_list
94
+
95
+ def cache_model_file_list_(self, folder: str):
96
+ model_file_list_cache = self.get_cache(folder)
97
+
98
+ if model_file_list_cache is None:
99
+ return None
100
+ if not os.path.isdir(folder):
101
+ return None
102
+ if os.path.getmtime(folder) != model_file_list_cache[1]:
103
+ return None
104
+ for x in model_file_list_cache[1]:
105
+ time_modified = model_file_list_cache[1][x]
106
+ folder = x
107
+ if os.path.getmtime(folder) != time_modified:
108
+ return None
109
+
110
+ return model_file_list_cache
111
+
112
+ def recursive_search_models_(self, directory: str, pathIndex: int) -> tuple[list[str], dict[str, float], float]:
113
+ if not os.path.isdir(directory):
114
+ return [], {}, time.perf_counter()
115
+
116
+ excluded_dir_names = [".git"]
117
+ # TODO use settings
118
+ include_hidden_files = False
119
+
120
+ result: list[str] = []
121
+ dirs: dict[str, float] = {}
122
+
123
+ for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
124
+ subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
125
+ if not include_hidden_files:
126
+ subdirs[:] = [d for d in subdirs if not d.startswith(".")]
127
+ filenames = [f for f in filenames if not f.startswith(".")]
128
+
129
+ filenames = filter_files_extensions(filenames, folder_paths.supported_pt_extensions)
130
+
131
+ for file_name in filenames:
132
+ try:
133
+ relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
134
+ result.append(relative_path)
135
+ except:
136
+ logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
137
+ continue
138
+
139
+ for d in subdirs:
140
+ path: str = os.path.join(dirpath, d)
141
+ try:
142
+ dirs[path] = os.path.getmtime(path)
143
+ except FileNotFoundError:
144
+ logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
145
+ continue
146
+
147
+ return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
148
+
149
+ def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
150
+ dirname = os.path.dirname(filepath)
151
+
152
+ if not os.path.exists(dirname):
153
+ return []
154
+
155
+ basename = os.path.splitext(filepath)[0]
156
+ match_files = glob.glob(f"{basename}.*", recursive=False)
157
+ image_files = filter_files_content_types(match_files, "image")
158
+ safetensors_file = next(filter(lambda x: x.endswith(".safetensors"), match_files), None)
159
+ safetensors_metadata = {}
160
+
161
+ result: list[str | BytesIO] = []
162
+
163
+ for filename in image_files:
164
+ _basename = os.path.splitext(filename)[0]
165
+ if _basename == basename:
166
+ result.append(filename)
167
+ if _basename == f"{basename}.preview":
168
+ result.append(filename)
169
+
170
+ if safetensors_file:
171
+ safetensors_filepath = os.path.join(dirname, safetensors_file)
172
+ header = comfy.utils.safetensors_header(safetensors_filepath, max_size=8*1024*1024)
173
+ if header:
174
+ safetensors_metadata = json.loads(header)
175
+ safetensors_images = safetensors_metadata.get("__metadata__", {}).get("ssmd_cover_images", None)
176
+ if safetensors_images:
177
+ safetensors_images = json.loads(safetensors_images)
178
+ for image in safetensors_images:
179
+ result.append(BytesIO(base64.b64decode(image)))
180
+
181
+ return result
182
+
183
+ def __exit__(self, exc_type, exc_value, traceback):
184
+ self.clear_cache()
app/user_manager.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import json
3
+ import os
4
+ import re
5
+ import uuid
6
+ import glob
7
+ import shutil
8
+ import logging
9
+ from aiohttp import web
10
+ from urllib import parse
11
+ from comfy.cli_args import args
12
+ import folder_paths
13
+ from .app_settings import AppSettings
14
+ from typing import TypedDict
15
+
16
+ default_user = "default"
17
+
18
+
19
+ class FileInfo(TypedDict):
20
+ path: str
21
+ size: int
22
+ modified: int
23
+
24
+
25
+ def get_file_info(path: str, relative_to: str) -> FileInfo:
26
+ return {
27
+ "path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
28
+ "size": os.path.getsize(path),
29
+ "modified": os.path.getmtime(path)
30
+ }
31
+
32
+
33
+ class UserManager():
34
+ def __init__(self):
35
+ user_directory = folder_paths.get_user_directory()
36
+
37
+ self.settings = AppSettings(self)
38
+ if not os.path.exists(user_directory):
39
+ os.makedirs(user_directory, exist_ok=True)
40
+ if not args.multi_user:
41
+ logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
42
+ logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
43
+
44
+ if args.multi_user:
45
+ if os.path.isfile(self.get_users_file()):
46
+ with open(self.get_users_file()) as f:
47
+ self.users = json.load(f)
48
+ else:
49
+ self.users = {}
50
+ else:
51
+ self.users = {"default": "default"}
52
+
53
+ def get_users_file(self):
54
+ return os.path.join(folder_paths.get_user_directory(), "users.json")
55
+
56
+ def get_request_user_id(self, request):
57
+ user = "default"
58
+ if args.multi_user and "comfy-user" in request.headers:
59
+ user = request.headers["comfy-user"]
60
+
61
+ if user not in self.users:
62
+ raise KeyError("Unknown user: " + user)
63
+
64
+ return user
65
+
66
+ def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
67
+ user_directory = folder_paths.get_user_directory()
68
+
69
+ if type == "userdata":
70
+ root_dir = user_directory
71
+ else:
72
+ raise KeyError("Unknown filepath type:" + type)
73
+
74
+ user = self.get_request_user_id(request)
75
+ path = user_root = os.path.abspath(os.path.join(root_dir, user))
76
+
77
+ # prevent leaving /{type}
78
+ if os.path.commonpath((root_dir, user_root)) != root_dir:
79
+ return None
80
+
81
+ if file is not None:
82
+ # Check if filename is url encoded
83
+ if "%" in file:
84
+ file = parse.unquote(file)
85
+
86
+ # prevent leaving /{type}/{user}
87
+ path = os.path.abspath(os.path.join(user_root, file))
88
+ if os.path.commonpath((user_root, path)) != user_root:
89
+ return None
90
+
91
+ parent = os.path.split(path)[0]
92
+
93
+ if create_dir and not os.path.exists(parent):
94
+ os.makedirs(parent, exist_ok=True)
95
+
96
+ return path
97
+
98
+ def add_user(self, name):
99
+ name = name.strip()
100
+ if not name:
101
+ raise ValueError("username not provided")
102
+ user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
103
+ user_id = user_id + "_" + str(uuid.uuid4())
104
+
105
+ self.users[user_id] = name
106
+
107
+ with open(self.get_users_file(), "w") as f:
108
+ json.dump(self.users, f)
109
+
110
+ return user_id
111
+
112
+ def add_routes(self, routes):
113
+ self.settings.add_routes(routes)
114
+
115
+ @routes.get("/users")
116
+ async def get_users(request):
117
+ if args.multi_user:
118
+ return web.json_response({"storage": "server", "users": self.users})
119
+ else:
120
+ user_dir = self.get_request_user_filepath(request, None, create_dir=False)
121
+ return web.json_response({
122
+ "storage": "server",
123
+ "migrated": os.path.exists(user_dir)
124
+ })
125
+
126
+ @routes.post("/users")
127
+ async def post_users(request):
128
+ body = await request.json()
129
+ username = body["username"]
130
+ if username in self.users.values():
131
+ return web.json_response({"error": "Duplicate username."}, status=400)
132
+
133
+ user_id = self.add_user(username)
134
+ return web.json_response(user_id)
135
+
136
+ @routes.get("/userdata")
137
+ async def listuserdata(request):
138
+ """
139
+ List user data files in a specified directory.
140
+
141
+ This endpoint allows listing files in a user's data directory, with options for recursion,
142
+ full file information, and path splitting.
143
+
144
+ Query Parameters:
145
+ - dir (required): The directory to list files from.
146
+ - recurse (optional): If "true", recursively list files in subdirectories.
147
+ - full_info (optional): If "true", return detailed file information (path, size, modified time).
148
+ - split (optional): If "true", split file paths into components (only applies when full_info is false).
149
+
150
+ Returns:
151
+ - 400: If 'dir' parameter is missing.
152
+ - 403: If the requested path is not allowed.
153
+ - 404: If the requested directory does not exist.
154
+ - 200: JSON response with the list of files or file information.
155
+
156
+ The response format depends on the query parameters:
157
+ - Default: List of relative file paths.
158
+ - full_info=true: List of dictionaries with file details.
159
+ - split=true (and full_info=false): List of lists, each containing path components.
160
+ """
161
+ directory = request.rel_url.query.get('dir', '')
162
+ if not directory:
163
+ return web.Response(status=400, text="Directory not provided")
164
+
165
+ path = self.get_request_user_filepath(request, directory)
166
+ if not path:
167
+ return web.Response(status=403, text="Invalid directory")
168
+
169
+ if not os.path.exists(path):
170
+ return web.Response(status=404, text="Directory not found")
171
+
172
+ recurse = request.rel_url.query.get('recurse', '').lower() == "true"
173
+ full_info = request.rel_url.query.get('full_info', '').lower() == "true"
174
+ split_path = request.rel_url.query.get('split', '').lower() == "true"
175
+
176
+ # Use different patterns based on whether we're recursing or not
177
+ if recurse:
178
+ pattern = os.path.join(glob.escape(path), '**', '*')
179
+ else:
180
+ pattern = os.path.join(glob.escape(path), '*')
181
+
182
+ def process_full_path(full_path: str) -> FileInfo | str | list[str]:
183
+ if full_info:
184
+ return get_file_info(full_path, path)
185
+
186
+ rel_path = os.path.relpath(full_path, path).replace(os.sep, '/')
187
+ if split_path:
188
+ return [rel_path] + rel_path.split('/')
189
+
190
+ return rel_path
191
+
192
+ results = [
193
+ process_full_path(full_path)
194
+ for full_path in glob.glob(pattern, recursive=recurse)
195
+ if os.path.isfile(full_path)
196
+ ]
197
+
198
+ return web.json_response(results)
199
+
200
+ @routes.get("/v2/userdata")
201
+ async def list_userdata_v2(request):
202
+ """
203
+ List files and directories in a user's data directory.
204
+
205
+ This endpoint provides a structured listing of contents within a specified
206
+ subdirectory of the user's data storage.
207
+
208
+ Query Parameters:
209
+ - path (optional): The relative path within the user's data directory
210
+ to list. Defaults to the root ('').
211
+
212
+ Returns:
213
+ - 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
214
+ - 404: If the requested path does not exist.
215
+ - 403: If the user is invalid.
216
+ - 500: If there is an error reading the directory contents.
217
+ - 200: JSON response containing a list of file and directory objects.
218
+ Each object includes:
219
+ - name: The name of the file or directory.
220
+ - type: 'file' or 'directory'.
221
+ - path: The relative path from the user's data root.
222
+ - size (for files): The size in bytes.
223
+ - modified (for files): The last modified timestamp (Unix epoch).
224
+ """
225
+ requested_rel_path = request.rel_url.query.get('path', '')
226
+
227
+ # URL-decode the path parameter
228
+ try:
229
+ requested_rel_path = parse.unquote(requested_rel_path)
230
+ except Exception as e:
231
+ logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
232
+ return web.Response(status=400, text="Invalid characters in path parameter")
233
+
234
+
235
+ # Check user validity and get the absolute path for the requested directory
236
+ try:
237
+ base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
238
+
239
+ if requested_rel_path:
240
+ target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
241
+ else:
242
+ target_abs_path = base_user_path
243
+
244
+ except KeyError as e:
245
+ # Invalid user detected by get_request_user_id inside get_request_user_filepath
246
+ logging.warning(f"Access denied for user: {e}")
247
+ return web.Response(status=403, text="Invalid user specified in request")
248
+
249
+
250
+ if not target_abs_path:
251
+ # Path traversal or other issue detected by get_request_user_filepath
252
+ return web.Response(status=400, text="Invalid path requested")
253
+
254
+ # Handle cases where the user directory or target path doesn't exist
255
+ if not os.path.exists(target_abs_path):
256
+ # Check if it's the base user directory that's missing (new user case)
257
+ if target_abs_path == base_user_path:
258
+ # It's okay if the base user directory doesn't exist yet, return empty list
259
+ return web.json_response([])
260
+ else:
261
+ # A specific subdirectory was requested but doesn't exist
262
+ return web.Response(status=404, text="Requested path not found")
263
+
264
+ if not os.path.isdir(target_abs_path):
265
+ return web.Response(status=400, text="Requested path is not a directory")
266
+
267
+ results = []
268
+ try:
269
+ for root, dirs, files in os.walk(target_abs_path, topdown=True):
270
+ # Process directories
271
+ for dir_name in dirs:
272
+ dir_path = os.path.join(root, dir_name)
273
+ rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
274
+ results.append({
275
+ "name": dir_name,
276
+ "path": rel_path,
277
+ "type": "directory"
278
+ })
279
+
280
+ # Process files
281
+ for file_name in files:
282
+ file_path = os.path.join(root, file_name)
283
+ rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
284
+ entry_info = {
285
+ "name": file_name,
286
+ "path": rel_path,
287
+ "type": "file"
288
+ }
289
+ try:
290
+ stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
291
+ entry_info["size"] = stats.st_size
292
+ entry_info["modified"] = stats.st_mtime
293
+ except OSError as stat_error:
294
+ logging.warning(f"Could not stat file {file_path}: {stat_error}")
295
+ pass # Include file with available info
296
+ results.append(entry_info)
297
+ except OSError as e:
298
+ logging.error(f"Error listing directory {target_abs_path}: {e}")
299
+ return web.Response(status=500, text="Error reading directory contents")
300
+
301
+ # Sort results alphabetically, directories first then files
302
+ results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
303
+
304
+ return web.json_response(results)
305
+
306
+ def get_user_data_path(request, check_exists = False, param = "file"):
307
+ file = request.match_info.get(param, None)
308
+ if not file:
309
+ return web.Response(status=400)
310
+
311
+ path = self.get_request_user_filepath(request, file)
312
+ if not path:
313
+ return web.Response(status=403)
314
+
315
+ if check_exists and not os.path.exists(path):
316
+ return web.Response(status=404)
317
+
318
+ return path
319
+
320
+ @routes.get("/userdata/{file}")
321
+ async def getuserdata(request):
322
+ path = get_user_data_path(request, check_exists=True)
323
+ if not isinstance(path, str):
324
+ return path
325
+
326
+ return web.FileResponse(path)
327
+
328
+ @routes.post("/userdata/{file}")
329
+ async def post_userdata(request):
330
+ """
331
+ Upload or update a user data file.
332
+
333
+ This endpoint handles file uploads to a user's data directory, with options for
334
+ controlling overwrite behavior and response format.
335
+
336
+ Query Parameters:
337
+ - overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
338
+ - full_info (optional): If "true", returns detailed file information (path, size, modified time).
339
+ If "false", returns only the relative file path.
340
+
341
+ Path Parameters:
342
+ - file: The target file path (URL encoded if necessary).
343
+
344
+ Returns:
345
+ - 400: If 'file' parameter is missing.
346
+ - 403: If the requested path is not allowed.
347
+ - 409: If overwrite=false and the file already exists.
348
+ - 200: JSON response with either:
349
+ - Full file information (if full_info=true)
350
+ - Relative file path (if full_info=false)
351
+
352
+ The request body should contain the raw file content to be written.
353
+ """
354
+ path = get_user_data_path(request)
355
+ if not isinstance(path, str):
356
+ return path
357
+
358
+ overwrite = request.query.get("overwrite", 'true') != "false"
359
+ full_info = request.query.get('full_info', 'false').lower() == "true"
360
+
361
+ if not overwrite and os.path.exists(path):
362
+ return web.Response(status=409, text="File already exists")
363
+
364
+ body = await request.read()
365
+
366
+ with open(path, "wb") as f:
367
+ f.write(body)
368
+
369
+ user_path = self.get_request_user_filepath(request, None)
370
+ if full_info:
371
+ resp = get_file_info(path, user_path)
372
+ else:
373
+ resp = os.path.relpath(path, user_path)
374
+
375
+ return web.json_response(resp)
376
+
377
+ @routes.delete("/userdata/{file}")
378
+ async def delete_userdata(request):
379
+ path = get_user_data_path(request, check_exists=True)
380
+ if not isinstance(path, str):
381
+ return path
382
+
383
+ os.remove(path)
384
+
385
+ return web.Response(status=204)
386
+
387
+ @routes.post("/userdata/{file}/move/{dest}")
388
+ async def move_userdata(request):
389
+ """
390
+ Move or rename a user data file.
391
+
392
+ This endpoint handles moving or renaming files within a user's data directory, with options for
393
+ controlling overwrite behavior and response format.
394
+
395
+ Path Parameters:
396
+ - file: The source file path (URL encoded if necessary)
397
+ - dest: The destination file path (URL encoded if necessary)
398
+
399
+ Query Parameters:
400
+ - overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
401
+ - full_info (optional): If "true", returns detailed file information (path, size, modified time).
402
+ If "false", returns only the relative file path.
403
+
404
+ Returns:
405
+ - 400: If either 'file' or 'dest' parameter is missing
406
+ - 403: If either requested path is not allowed
407
+ - 404: If the source file does not exist
408
+ - 409: If overwrite=false and the destination file already exists
409
+ - 200: JSON response with either:
410
+ - Full file information (if full_info=true)
411
+ - Relative file path (if full_info=false)
412
+ """
413
+ source = get_user_data_path(request, check_exists=True)
414
+ if not isinstance(source, str):
415
+ return source
416
+
417
+ dest = get_user_data_path(request, check_exists=False, param="dest")
418
+ if not isinstance(source, str):
419
+ return dest
420
+
421
+ overwrite = request.query.get("overwrite", 'true') != "false"
422
+ full_info = request.query.get('full_info', 'false').lower() == "true"
423
+
424
+ if not overwrite and os.path.exists(dest):
425
+ return web.Response(status=409, text="File already exists")
426
+
427
+ logging.info(f"moving '{source}' -> '{dest}'")
428
+ shutil.move(source, dest)
429
+
430
+ user_path = self.get_request_user_filepath(request, None)
431
+ if full_info:
432
+ resp = get_file_info(dest, user_path)
433
+ else:
434
+ resp = os.path.relpath(dest, user_path)
435
+
436
+ return web.json_response(resp)
comfy/checkpoint_pickle.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ load = pickle.load
4
+
5
+ class Empty:
6
+ pass
7
+
8
+ class Unpickler(pickle.Unpickler):
9
+ def find_class(self, module, name):
10
+ #TODO: safe unpickle
11
+ if module.startswith("pytorch_lightning"):
12
+ return Empty
13
+ return super().find_class(module, name)
comfy/cldm/cldm.py ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #taken from: https://github.com/lllyasviel/ControlNet
2
+ #and modified
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from ..ldm.modules.diffusionmodules.util import (
8
+ timestep_embedding,
9
+ )
10
+
11
+ from ..ldm.modules.attention import SpatialTransformer
12
+ from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
13
+ from ..ldm.util import exists
14
+ from .control_types import UNION_CONTROLNET_TYPES
15
+ from collections import OrderedDict
16
+ import comfy.ops
17
+ from comfy.ldm.modules.attention import optimized_attention
18
+
19
+ class OptimizedAttention(nn.Module):
20
+ def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
21
+ super().__init__()
22
+ self.heads = nhead
23
+ self.c = c
24
+
25
+ self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
26
+ self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
27
+
28
+ def forward(self, x):
29
+ x = self.in_proj(x)
30
+ q, k, v = x.split(self.c, dim=2)
31
+ out = optimized_attention(q, k, v, self.heads)
32
+ return self.out_proj(out)
33
+
34
+ class QuickGELU(nn.Module):
35
+ def forward(self, x: torch.Tensor):
36
+ return x * torch.sigmoid(1.702 * x)
37
+
38
+ class ResBlockUnionControlnet(nn.Module):
39
+ def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
40
+ super().__init__()
41
+ self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
42
+ self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
43
+ self.mlp = nn.Sequential(
44
+ OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
45
+ ("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
46
+ self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
47
+
48
+ def attention(self, x: torch.Tensor):
49
+ return self.attn(x)
50
+
51
+ def forward(self, x: torch.Tensor):
52
+ x = x + self.attention(self.ln_1(x))
53
+ x = x + self.mlp(self.ln_2(x))
54
+ return x
55
+
56
+ class ControlledUnetModel(UNetModel):
57
+ #implemented in the ldm unet
58
+ pass
59
+
60
+ class ControlNet(nn.Module):
61
+ def __init__(
62
+ self,
63
+ image_size,
64
+ in_channels,
65
+ model_channels,
66
+ hint_channels,
67
+ num_res_blocks,
68
+ dropout=0,
69
+ channel_mult=(1, 2, 4, 8),
70
+ conv_resample=True,
71
+ dims=2,
72
+ num_classes=None,
73
+ use_checkpoint=False,
74
+ dtype=torch.float32,
75
+ num_heads=-1,
76
+ num_head_channels=-1,
77
+ num_heads_upsample=-1,
78
+ use_scale_shift_norm=False,
79
+ resblock_updown=False,
80
+ use_new_attention_order=False,
81
+ use_spatial_transformer=False, # custom transformer support
82
+ transformer_depth=1, # custom transformer support
83
+ context_dim=None, # custom transformer support
84
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
85
+ legacy=True,
86
+ disable_self_attentions=None,
87
+ num_attention_blocks=None,
88
+ disable_middle_self_attn=False,
89
+ use_linear_in_transformer=False,
90
+ adm_in_channels=None,
91
+ transformer_depth_middle=None,
92
+ transformer_depth_output=None,
93
+ attn_precision=None,
94
+ union_controlnet_num_control_type=None,
95
+ device=None,
96
+ operations=comfy.ops.disable_weight_init,
97
+ **kwargs,
98
+ ):
99
+ super().__init__()
100
+ assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
101
+ if use_spatial_transformer:
102
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
103
+
104
+ if context_dim is not None:
105
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
106
+ # from omegaconf.listconfig import ListConfig
107
+ # if type(context_dim) == ListConfig:
108
+ # context_dim = list(context_dim)
109
+
110
+ if num_heads_upsample == -1:
111
+ num_heads_upsample = num_heads
112
+
113
+ if num_heads == -1:
114
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
115
+
116
+ if num_head_channels == -1:
117
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
118
+
119
+ self.dims = dims
120
+ self.image_size = image_size
121
+ self.in_channels = in_channels
122
+ self.model_channels = model_channels
123
+
124
+ if isinstance(num_res_blocks, int):
125
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
126
+ else:
127
+ if len(num_res_blocks) != len(channel_mult):
128
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
129
+ "as a list/tuple (per-level) with the same length as channel_mult")
130
+ self.num_res_blocks = num_res_blocks
131
+
132
+ if disable_self_attentions is not None:
133
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
134
+ assert len(disable_self_attentions) == len(channel_mult)
135
+ if num_attention_blocks is not None:
136
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
137
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
138
+
139
+ transformer_depth = transformer_depth[:]
140
+
141
+ self.dropout = dropout
142
+ self.channel_mult = channel_mult
143
+ self.conv_resample = conv_resample
144
+ self.num_classes = num_classes
145
+ self.use_checkpoint = use_checkpoint
146
+ self.dtype = dtype
147
+ self.num_heads = num_heads
148
+ self.num_head_channels = num_head_channels
149
+ self.num_heads_upsample = num_heads_upsample
150
+ self.predict_codebook_ids = n_embed is not None
151
+
152
+ time_embed_dim = model_channels * 4
153
+ self.time_embed = nn.Sequential(
154
+ operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
155
+ nn.SiLU(),
156
+ operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
157
+ )
158
+
159
+ if self.num_classes is not None:
160
+ if isinstance(self.num_classes, int):
161
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
162
+ elif self.num_classes == "continuous":
163
+ self.label_emb = nn.Linear(1, time_embed_dim)
164
+ elif self.num_classes == "sequential":
165
+ assert adm_in_channels is not None
166
+ self.label_emb = nn.Sequential(
167
+ nn.Sequential(
168
+ operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
169
+ nn.SiLU(),
170
+ operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
171
+ )
172
+ )
173
+ else:
174
+ raise ValueError()
175
+
176
+ self.input_blocks = nn.ModuleList(
177
+ [
178
+ TimestepEmbedSequential(
179
+ operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
180
+ )
181
+ ]
182
+ )
183
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
184
+
185
+ self.input_hint_block = TimestepEmbedSequential(
186
+ operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
187
+ nn.SiLU(),
188
+ operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
189
+ nn.SiLU(),
190
+ operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
191
+ nn.SiLU(),
192
+ operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
193
+ nn.SiLU(),
194
+ operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
195
+ nn.SiLU(),
196
+ operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
197
+ nn.SiLU(),
198
+ operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
199
+ nn.SiLU(),
200
+ operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
201
+ )
202
+
203
+ self._feature_size = model_channels
204
+ input_block_chans = [model_channels]
205
+ ch = model_channels
206
+ ds = 1
207
+ for level, mult in enumerate(channel_mult):
208
+ for nr in range(self.num_res_blocks[level]):
209
+ layers = [
210
+ ResBlock(
211
+ ch,
212
+ time_embed_dim,
213
+ dropout,
214
+ out_channels=mult * model_channels,
215
+ dims=dims,
216
+ use_checkpoint=use_checkpoint,
217
+ use_scale_shift_norm=use_scale_shift_norm,
218
+ dtype=self.dtype,
219
+ device=device,
220
+ operations=operations,
221
+ )
222
+ ]
223
+ ch = mult * model_channels
224
+ num_transformers = transformer_depth.pop(0)
225
+ if num_transformers > 0:
226
+ if num_head_channels == -1:
227
+ dim_head = ch // num_heads
228
+ else:
229
+ num_heads = ch // num_head_channels
230
+ dim_head = num_head_channels
231
+ if legacy:
232
+ #num_heads = 1
233
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
234
+ if exists(disable_self_attentions):
235
+ disabled_sa = disable_self_attentions[level]
236
+ else:
237
+ disabled_sa = False
238
+
239
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
240
+ layers.append(
241
+ SpatialTransformer(
242
+ ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
243
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
244
+ use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
245
+ )
246
+ )
247
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
248
+ self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
249
+ self._feature_size += ch
250
+ input_block_chans.append(ch)
251
+ if level != len(channel_mult) - 1:
252
+ out_ch = ch
253
+ self.input_blocks.append(
254
+ TimestepEmbedSequential(
255
+ ResBlock(
256
+ ch,
257
+ time_embed_dim,
258
+ dropout,
259
+ out_channels=out_ch,
260
+ dims=dims,
261
+ use_checkpoint=use_checkpoint,
262
+ use_scale_shift_norm=use_scale_shift_norm,
263
+ down=True,
264
+ dtype=self.dtype,
265
+ device=device,
266
+ operations=operations
267
+ )
268
+ if resblock_updown
269
+ else Downsample(
270
+ ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
271
+ )
272
+ )
273
+ )
274
+ ch = out_ch
275
+ input_block_chans.append(ch)
276
+ self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
277
+ ds *= 2
278
+ self._feature_size += ch
279
+
280
+ if num_head_channels == -1:
281
+ dim_head = ch // num_heads
282
+ else:
283
+ num_heads = ch // num_head_channels
284
+ dim_head = num_head_channels
285
+ if legacy:
286
+ #num_heads = 1
287
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
288
+ mid_block = [
289
+ ResBlock(
290
+ ch,
291
+ time_embed_dim,
292
+ dropout,
293
+ dims=dims,
294
+ use_checkpoint=use_checkpoint,
295
+ use_scale_shift_norm=use_scale_shift_norm,
296
+ dtype=self.dtype,
297
+ device=device,
298
+ operations=operations
299
+ )]
300
+ if transformer_depth_middle >= 0:
301
+ mid_block += [SpatialTransformer( # always uses a self-attn
302
+ ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
303
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
304
+ use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
305
+ ),
306
+ ResBlock(
307
+ ch,
308
+ time_embed_dim,
309
+ dropout,
310
+ dims=dims,
311
+ use_checkpoint=use_checkpoint,
312
+ use_scale_shift_norm=use_scale_shift_norm,
313
+ dtype=self.dtype,
314
+ device=device,
315
+ operations=operations
316
+ )]
317
+ self.middle_block = TimestepEmbedSequential(*mid_block)
318
+ self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
319
+ self._feature_size += ch
320
+
321
+ if union_controlnet_num_control_type is not None:
322
+ self.num_control_type = union_controlnet_num_control_type
323
+ num_trans_channel = 320
324
+ num_trans_head = 8
325
+ num_trans_layer = 1
326
+ num_proj_channel = 320
327
+ # task_scale_factor = num_trans_channel ** 0.5
328
+ self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
329
+
330
+ self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
331
+ self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
332
+ #-----------------------------------------------------------------------------------------------------
333
+
334
+ control_add_embed_dim = 256
335
+ class ControlAddEmbedding(nn.Module):
336
+ def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
337
+ super().__init__()
338
+ self.num_control_type = num_control_type
339
+ self.in_dim = in_dim
340
+ self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
341
+ self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
342
+ def forward(self, control_type, dtype, device):
343
+ c_type = torch.zeros((self.num_control_type,), device=device)
344
+ c_type[control_type] = 1.0
345
+ c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
346
+ return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
347
+
348
+ self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
349
+ else:
350
+ self.task_embedding = None
351
+ self.control_add_embedding = None
352
+
353
+ def union_controlnet_merge(self, hint, control_type, emb, context):
354
+ # Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
355
+ inputs = []
356
+ condition_list = []
357
+
358
+ for idx in range(min(1, len(control_type))):
359
+ controlnet_cond = self.input_hint_block(hint[idx], emb, context)
360
+ feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
361
+ if idx < len(control_type):
362
+ feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
363
+
364
+ inputs.append(feat_seq.unsqueeze(1))
365
+ condition_list.append(controlnet_cond)
366
+
367
+ x = torch.cat(inputs, dim=1)
368
+ x = self.transformer_layes(x)
369
+ controlnet_cond_fuser = None
370
+ for idx in range(len(control_type)):
371
+ alpha = self.spatial_ch_projs(x[:, idx])
372
+ alpha = alpha.unsqueeze(-1).unsqueeze(-1)
373
+ o = condition_list[idx] + alpha
374
+ if controlnet_cond_fuser is None:
375
+ controlnet_cond_fuser = o
376
+ else:
377
+ controlnet_cond_fuser += o
378
+ return controlnet_cond_fuser
379
+
380
+ def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
381
+ return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
382
+
383
+ def forward(self, x, hint, timesteps, context, y=None, **kwargs):
384
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
385
+ emb = self.time_embed(t_emb)
386
+
387
+ guided_hint = None
388
+ if self.control_add_embedding is not None: #Union Controlnet
389
+ control_type = kwargs.get("control_type", [])
390
+
391
+ if any([c >= self.num_control_type for c in control_type]):
392
+ max_type = max(control_type)
393
+ max_type_name = {
394
+ v: k for k, v in UNION_CONTROLNET_TYPES.items()
395
+ }[max_type]
396
+ raise ValueError(
397
+ f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
398
+ f"({self.num_control_type}) supported.\n" +
399
+ "Please consider using the ProMax ControlNet Union model.\n" +
400
+ "https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
401
+ )
402
+
403
+ emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
404
+ if len(control_type) > 0:
405
+ if len(hint.shape) < 5:
406
+ hint = hint.unsqueeze(dim=0)
407
+ guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
408
+
409
+ if guided_hint is None:
410
+ guided_hint = self.input_hint_block(hint, emb, context)
411
+
412
+ out_output = []
413
+ out_middle = []
414
+
415
+ if self.num_classes is not None:
416
+ assert y.shape[0] == x.shape[0]
417
+ emb = emb + self.label_emb(y)
418
+
419
+ h = x
420
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
421
+ if guided_hint is not None:
422
+ h = module(h, emb, context)
423
+ h += guided_hint
424
+ guided_hint = None
425
+ else:
426
+ h = module(h, emb, context)
427
+ out_output.append(zero_conv(h, emb, context))
428
+
429
+ h = self.middle_block(h, emb, context)
430
+ out_middle.append(self.middle_block_out(h, emb, context))
431
+
432
+ return {"middle": out_middle, "output": out_output}
433
+
comfy/cldm/control_types.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ UNION_CONTROLNET_TYPES = {
2
+ "openpose": 0,
3
+ "depth": 1,
4
+ "hed/pidi/scribble/ted": 2,
5
+ "canny/lineart/anime_lineart/mlsd": 3,
6
+ "normal": 4,
7
+ "segment": 5,
8
+ "tile": 6,
9
+ "repaint": 7,
10
+ }
comfy/cldm/dit_embedder.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch import Tensor
7
+
8
+ from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
9
+
10
+
11
+ class ControlNetEmbedder(nn.Module):
12
+
13
+ def __init__(
14
+ self,
15
+ img_size: int,
16
+ patch_size: int,
17
+ in_chans: int,
18
+ attention_head_dim: int,
19
+ num_attention_heads: int,
20
+ adm_in_channels: int,
21
+ num_layers: int,
22
+ main_model_double: int,
23
+ double_y_emb: bool,
24
+ device: torch.device,
25
+ dtype: torch.dtype,
26
+ pos_embed_max_size: Optional[int] = None,
27
+ operations = None,
28
+ ):
29
+ super().__init__()
30
+ self.main_model_double = main_model_double
31
+ self.dtype = dtype
32
+ self.hidden_size = num_attention_heads * attention_head_dim
33
+ self.patch_size = patch_size
34
+ self.x_embedder = PatchEmbed(
35
+ img_size=img_size,
36
+ patch_size=patch_size,
37
+ in_chans=in_chans,
38
+ embed_dim=self.hidden_size,
39
+ strict_img_size=pos_embed_max_size is None,
40
+ device=device,
41
+ dtype=dtype,
42
+ operations=operations,
43
+ )
44
+
45
+ self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
46
+
47
+ self.double_y_emb = double_y_emb
48
+ if self.double_y_emb:
49
+ self.orig_y_embedder = VectorEmbedder(
50
+ adm_in_channels, self.hidden_size, dtype, device, operations=operations
51
+ )
52
+ self.y_embedder = VectorEmbedder(
53
+ self.hidden_size, self.hidden_size, dtype, device, operations=operations
54
+ )
55
+ else:
56
+ self.y_embedder = VectorEmbedder(
57
+ adm_in_channels, self.hidden_size, dtype, device, operations=operations
58
+ )
59
+
60
+ self.transformer_blocks = nn.ModuleList(
61
+ DismantledBlock(
62
+ hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
63
+ dtype=dtype, device=device, operations=operations
64
+ )
65
+ for _ in range(num_layers)
66
+ )
67
+
68
+ # self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
69
+ # TODO double check this logic when 8b
70
+ self.use_y_embedder = True
71
+
72
+ self.controlnet_blocks = nn.ModuleList([])
73
+ for _ in range(len(self.transformer_blocks)):
74
+ controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
75
+ self.controlnet_blocks.append(controlnet_block)
76
+
77
+ self.pos_embed_input = PatchEmbed(
78
+ img_size=img_size,
79
+ patch_size=patch_size,
80
+ in_chans=in_chans,
81
+ embed_dim=self.hidden_size,
82
+ strict_img_size=False,
83
+ device=device,
84
+ dtype=dtype,
85
+ operations=operations,
86
+ )
87
+
88
+ def forward(
89
+ self,
90
+ x: torch.Tensor,
91
+ timesteps: torch.Tensor,
92
+ y: Optional[torch.Tensor] = None,
93
+ context: Optional[torch.Tensor] = None,
94
+ hint = None,
95
+ ) -> Tuple[Tensor, List[Tensor]]:
96
+ x_shape = list(x.shape)
97
+ x = self.x_embedder(x)
98
+ if not self.double_y_emb:
99
+ h = (x_shape[-2] + 1) // self.patch_size
100
+ w = (x_shape[-1] + 1) // self.patch_size
101
+ x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
102
+ c = self.t_embedder(timesteps, dtype=x.dtype)
103
+ if y is not None and self.y_embedder is not None:
104
+ if self.double_y_emb:
105
+ y = self.orig_y_embedder(y)
106
+ y = self.y_embedder(y)
107
+ c = c + y
108
+
109
+ x = x + self.pos_embed_input(hint)
110
+
111
+ block_out = ()
112
+
113
+ repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
114
+ for i in range(len(self.transformer_blocks)):
115
+ out = self.transformer_blocks[i](x, c)
116
+ if not self.double_y_emb:
117
+ x = out
118
+ block_out += (self.controlnet_blocks[i](out),) * repeat
119
+
120
+ return {"output": block_out}
comfy/cldm/mmdit.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Optional
3
+ import comfy.ldm.modules.diffusionmodules.mmdit
4
+
5
+ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
6
+ def __init__(
7
+ self,
8
+ num_blocks = None,
9
+ control_latent_channels = None,
10
+ dtype = None,
11
+ device = None,
12
+ operations = None,
13
+ **kwargs,
14
+ ):
15
+ super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
16
+ # controlnet_blocks
17
+ self.controlnet_blocks = torch.nn.ModuleList([])
18
+ for _ in range(len(self.joint_blocks)):
19
+ self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
20
+
21
+ if control_latent_channels is None:
22
+ control_latent_channels = self.in_channels
23
+
24
+ self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
25
+ None,
26
+ self.patch_size,
27
+ control_latent_channels,
28
+ self.hidden_size,
29
+ bias=True,
30
+ strict_img_size=False,
31
+ dtype=dtype,
32
+ device=device,
33
+ operations=operations
34
+ )
35
+
36
+ def forward(
37
+ self,
38
+ x: torch.Tensor,
39
+ timesteps: torch.Tensor,
40
+ y: Optional[torch.Tensor] = None,
41
+ context: Optional[torch.Tensor] = None,
42
+ hint = None,
43
+ ) -> torch.Tensor:
44
+
45
+ #weird sd3 controlnet specific stuff
46
+ y = torch.zeros_like(y)
47
+
48
+ if self.context_processor is not None:
49
+ context = self.context_processor(context)
50
+
51
+ hw = x.shape[-2:]
52
+ x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
53
+ x += self.pos_embed_input(hint)
54
+
55
+ c = self.t_embedder(timesteps, dtype=x.dtype)
56
+ if y is not None and self.y_embedder is not None:
57
+ y = self.y_embedder(y)
58
+ c = c + y
59
+
60
+ if context is not None:
61
+ context = self.context_embedder(context)
62
+
63
+ output = []
64
+
65
+ blocks = len(self.joint_blocks)
66
+ for i in range(blocks):
67
+ context, x = self.joint_blocks[i](
68
+ context,
69
+ x,
70
+ c=c,
71
+ use_checkpoint=self.use_checkpoint,
72
+ )
73
+
74
+ out = self.controlnet_blocks[i](x)
75
+ count = self.depth // blocks
76
+ if i == blocks - 1:
77
+ count -= 1
78
+ for j in range(count):
79
+ output.append(out)
80
+
81
+ return {"output": output}
comfy/cli_args.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import enum
3
+ import os
4
+ import comfy.options
5
+
6
+
7
+ class EnumAction(argparse.Action):
8
+ """
9
+ Argparse action for handling Enums
10
+ """
11
+ def __init__(self, **kwargs):
12
+ # Pop off the type value
13
+ enum_type = kwargs.pop("type", None)
14
+
15
+ # Ensure an Enum subclass is provided
16
+ if enum_type is None:
17
+ raise ValueError("type must be assigned an Enum when using EnumAction")
18
+ if not issubclass(enum_type, enum.Enum):
19
+ raise TypeError("type must be an Enum when using EnumAction")
20
+
21
+ # Generate choices from the Enum
22
+ choices = tuple(e.value for e in enum_type)
23
+ kwargs.setdefault("choices", choices)
24
+ kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
25
+
26
+ super(EnumAction, self).__init__(**kwargs)
27
+
28
+ self._enum = enum_type
29
+
30
+ def __call__(self, parser, namespace, values, option_string=None):
31
+ # Convert value back into an Enum
32
+ value = self._enum(values)
33
+ setattr(namespace, self.dest, value)
34
+
35
+
36
+ parser = argparse.ArgumentParser()
37
+
38
+ parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
39
+ parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
40
+ parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
41
+ parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
42
+ parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
43
+ parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
44
+
45
+ parser.add_argument("--base-directory", type=str, default=None, help="Set the ComfyUI base directory for models, custom_nodes, input, output, temp, and user directories.")
46
+ parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
47
+ parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory. Overrides --base-directory.")
48
+ parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory). Overrides --base-directory.")
49
+ parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
50
+ parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
51
+ parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
52
+ parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
53
+ cm_group = parser.add_mutually_exclusive_group()
54
+ cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
55
+ cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
56
+
57
+
58
+ fp_group = parser.add_mutually_exclusive_group()
59
+ fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
60
+ fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
61
+
62
+ fpunet_group = parser.add_mutually_exclusive_group()
63
+ fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
64
+ fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
65
+ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
66
+ fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
67
+ fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
68
+ fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
69
+ fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
70
+
71
+ fpvae_group = parser.add_mutually_exclusive_group()
72
+ fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
73
+ fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
74
+ fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
75
+
76
+ parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
77
+
78
+ fpte_group = parser.add_mutually_exclusive_group()
79
+ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
80
+ fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
81
+ fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
82
+ fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
83
+ fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
84
+
85
+ parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
86
+
87
+ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
88
+
89
+ parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
90
+ parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
91
+ parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
92
+
93
+ class LatentPreviewMethod(enum.Enum):
94
+ NoPreviews = "none"
95
+ Auto = "auto"
96
+ Latent2RGB = "latent2rgb"
97
+ TAESD = "taesd"
98
+
99
+ parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
100
+
101
+ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
102
+
103
+ cache_group = parser.add_mutually_exclusive_group()
104
+ cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
105
+ cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
106
+ cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
107
+
108
+ attn_group = parser.add_mutually_exclusive_group()
109
+ attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
110
+ attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
111
+ attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
112
+ attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
113
+ attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
114
+
115
+ parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
116
+
117
+ upcast = parser.add_mutually_exclusive_group()
118
+ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
119
+ upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
120
+
121
+
122
+ vram_group = parser.add_mutually_exclusive_group()
123
+ vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
124
+ vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
125
+ vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
126
+ vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
127
+ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
128
+ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
129
+
130
+ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
131
+
132
+ parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
133
+
134
+ parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
135
+
136
+ parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
137
+ parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
138
+
139
+ class PerformanceFeature(enum.Enum):
140
+ Fp16Accumulation = "fp16_accumulation"
141
+ Fp8MatrixMultiplication = "fp8_matrix_mult"
142
+ CublasOps = "cublas_ops"
143
+
144
+ parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
145
+
146
+ parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
147
+
148
+ parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
149
+ parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
150
+ parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
151
+
152
+ parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
153
+ parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
154
+ parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
155
+ parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
156
+
157
+ parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
158
+
159
+ parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
160
+ parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
161
+
162
+ # The default built-in provider hosted under web/
163
+ DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
164
+
165
+ parser.add_argument(
166
+ "--front-end-version",
167
+ type=str,
168
+ default=DEFAULT_VERSION_STRING,
169
+ help="""
170
+ Specifies the version of the frontend to be used. This command needs internet connectivity to query and
171
+ download available frontend implementations from GitHub releases.
172
+
173
+ The version string should be in the format of:
174
+ [repoOwner]/[repoName]@[version]
175
+ where version is one of: "latest" or a valid version number (e.g. "1.0.0")
176
+ """,
177
+ )
178
+
179
+ def is_valid_directory(path: str) -> str:
180
+ """Validate if the given path is a directory, and check permissions."""
181
+ if not os.path.exists(path):
182
+ raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
183
+ if not os.path.isdir(path):
184
+ raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
185
+ if not os.access(path, os.R_OK):
186
+ raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
187
+ return path
188
+
189
+ parser.add_argument(
190
+ "--front-end-root",
191
+ type=is_valid_directory,
192
+ default=None,
193
+ help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
194
+ )
195
+
196
+ parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path. Overrides --base-directory.")
197
+
198
+ parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
199
+
200
+ parser.add_argument(
201
+ "--comfy-api-base",
202
+ type=str,
203
+ default="https://api.comfy.org",
204
+ help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
205
+ )
206
+
207
+ database_default_path = os.path.abspath(
208
+ os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
209
+ )
210
+ parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
211
+
212
+ if comfy.options.args_parsing:
213
+ args = parser.parse_args()
214
+ else:
215
+ args = parser.parse_args([])
216
+
217
+ if args.windows_standalone_build:
218
+ args.auto_launch = True
219
+
220
+ if args.disable_auto_launch:
221
+ args.auto_launch = False
222
+
223
+ if args.force_fp16:
224
+ args.fp16_unet = True
225
+
226
+
227
+ # '--fast' is not provided, use an empty set
228
+ if args.fast is None:
229
+ args.fast = set()
230
+ # '--fast' is provided with an empty list, enable all optimizations
231
+ elif args.fast == []:
232
+ args.fast = set(PerformanceFeature)
233
+ # '--fast' is provided with a list of performance features, use that list
234
+ else:
235
+ args.fast = set(args.fast)
comfy/clip_config_bigg.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CLIPTextModel"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 0,
7
+ "dropout": 0.0,
8
+ "eos_token_id": 49407,
9
+ "hidden_act": "gelu",
10
+ "hidden_size": 1280,
11
+ "initializer_factor": 1.0,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5120,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 77,
16
+ "model_type": "clip_text_model",
17
+ "num_attention_heads": 20,
18
+ "num_hidden_layers": 32,
19
+ "pad_token_id": 1,
20
+ "projection_dim": 1280,
21
+ "torch_dtype": "float32",
22
+ "vocab_size": 49408
23
+ }
comfy/clip_model.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from comfy.ldm.modules.attention import optimized_attention_for_device
3
+ import comfy.ops
4
+
5
+ class CLIPAttention(torch.nn.Module):
6
+ def __init__(self, embed_dim, heads, dtype, device, operations):
7
+ super().__init__()
8
+
9
+ self.heads = heads
10
+ self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
11
+ self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
12
+ self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
13
+
14
+ self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
15
+
16
+ def forward(self, x, mask=None, optimized_attention=None):
17
+ q = self.q_proj(x)
18
+ k = self.k_proj(x)
19
+ v = self.v_proj(x)
20
+
21
+ out = optimized_attention(q, k, v, self.heads, mask)
22
+ return self.out_proj(out)
23
+
24
+ ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
25
+ "gelu": torch.nn.functional.gelu,
26
+ "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
27
+ }
28
+
29
+ class CLIPMLP(torch.nn.Module):
30
+ def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
31
+ super().__init__()
32
+ self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
33
+ self.activation = ACTIVATIONS[activation]
34
+ self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
35
+
36
+ def forward(self, x):
37
+ x = self.fc1(x)
38
+ x = self.activation(x)
39
+ x = self.fc2(x)
40
+ return x
41
+
42
+ class CLIPLayer(torch.nn.Module):
43
+ def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
44
+ super().__init__()
45
+ self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
46
+ self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
47
+ self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
48
+ self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
49
+
50
+ def forward(self, x, mask=None, optimized_attention=None):
51
+ x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
52
+ x += self.mlp(self.layer_norm2(x))
53
+ return x
54
+
55
+
56
+ class CLIPEncoder(torch.nn.Module):
57
+ def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
58
+ super().__init__()
59
+ self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
60
+
61
+ def forward(self, x, mask=None, intermediate_output=None):
62
+ optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
63
+
64
+ if intermediate_output is not None:
65
+ if intermediate_output < 0:
66
+ intermediate_output = len(self.layers) + intermediate_output
67
+
68
+ intermediate = None
69
+ for i, l in enumerate(self.layers):
70
+ x = l(x, mask, optimized_attention)
71
+ if i == intermediate_output:
72
+ intermediate = x.clone()
73
+ return x, intermediate
74
+
75
+ class CLIPEmbeddings(torch.nn.Module):
76
+ def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
77
+ super().__init__()
78
+ self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
79
+ self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
80
+
81
+ def forward(self, input_tokens, dtype=torch.float32):
82
+ return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
83
+
84
+
85
+ class CLIPTextModel_(torch.nn.Module):
86
+ def __init__(self, config_dict, dtype, device, operations):
87
+ num_layers = config_dict["num_hidden_layers"]
88
+ embed_dim = config_dict["hidden_size"]
89
+ heads = config_dict["num_attention_heads"]
90
+ intermediate_size = config_dict["intermediate_size"]
91
+ intermediate_activation = config_dict["hidden_act"]
92
+ num_positions = config_dict["max_position_embeddings"]
93
+ self.eos_token_id = config_dict["eos_token_id"]
94
+
95
+ super().__init__()
96
+ self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
97
+ self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
98
+ self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
99
+
100
+ def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
101
+ if embeds is not None:
102
+ x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
103
+ else:
104
+ x = self.embeddings(input_tokens, dtype=dtype)
105
+
106
+ mask = None
107
+ if attention_mask is not None:
108
+ mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
109
+ mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
110
+
111
+ causal_mask = torch.full((x.shape[1], x.shape[1]), -torch.finfo(x.dtype).max, dtype=x.dtype, device=x.device).triu_(1)
112
+
113
+ if mask is not None:
114
+ mask += causal_mask
115
+ else:
116
+ mask = causal_mask
117
+
118
+ x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
119
+ x = self.final_layer_norm(x)
120
+ if i is not None and final_layer_norm_intermediate:
121
+ i = self.final_layer_norm(i)
122
+
123
+ if num_tokens is not None:
124
+ pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
125
+ else:
126
+ pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
127
+ return x, i, pooled_output
128
+
129
+ class CLIPTextModel(torch.nn.Module):
130
+ def __init__(self, config_dict, dtype, device, operations):
131
+ super().__init__()
132
+ self.num_layers = config_dict["num_hidden_layers"]
133
+ self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
134
+ embed_dim = config_dict["hidden_size"]
135
+ self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
136
+ self.dtype = dtype
137
+
138
+ def get_input_embeddings(self):
139
+ return self.text_model.embeddings.token_embedding
140
+
141
+ def set_input_embeddings(self, embeddings):
142
+ self.text_model.embeddings.token_embedding = embeddings
143
+
144
+ def forward(self, *args, **kwargs):
145
+ x = self.text_model(*args, **kwargs)
146
+ out = self.text_projection(x[2])
147
+ return (x[0], x[1], out, x[2])
148
+
149
+
150
+ class CLIPVisionEmbeddings(torch.nn.Module):
151
+ def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
152
+ super().__init__()
153
+
154
+ num_patches = (image_size // patch_size) ** 2
155
+ if model_type == "siglip_vision_model":
156
+ self.class_embedding = None
157
+ patch_bias = True
158
+ else:
159
+ num_patches = num_patches + 1
160
+ self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
161
+ patch_bias = False
162
+
163
+ self.patch_embedding = operations.Conv2d(
164
+ in_channels=num_channels,
165
+ out_channels=embed_dim,
166
+ kernel_size=patch_size,
167
+ stride=patch_size,
168
+ bias=patch_bias,
169
+ dtype=dtype,
170
+ device=device
171
+ )
172
+
173
+ self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
174
+
175
+ def forward(self, pixel_values):
176
+ embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
177
+ if self.class_embedding is not None:
178
+ embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
179
+ return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
180
+
181
+
182
+ class CLIPVision(torch.nn.Module):
183
+ def __init__(self, config_dict, dtype, device, operations):
184
+ super().__init__()
185
+ num_layers = config_dict["num_hidden_layers"]
186
+ embed_dim = config_dict["hidden_size"]
187
+ heads = config_dict["num_attention_heads"]
188
+ intermediate_size = config_dict["intermediate_size"]
189
+ intermediate_activation = config_dict["hidden_act"]
190
+ model_type = config_dict["model_type"]
191
+
192
+ self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
193
+ if model_type == "siglip_vision_model":
194
+ self.pre_layrnorm = lambda a: a
195
+ self.output_layernorm = True
196
+ else:
197
+ self.pre_layrnorm = operations.LayerNorm(embed_dim)
198
+ self.output_layernorm = False
199
+ self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
200
+ self.post_layernorm = operations.LayerNorm(embed_dim)
201
+
202
+ def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
203
+ x = self.embeddings(pixel_values)
204
+ x = self.pre_layrnorm(x)
205
+ #TODO: attention_mask?
206
+ x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
207
+ if self.output_layernorm:
208
+ x = self.post_layernorm(x)
209
+ pooled_output = x
210
+ else:
211
+ pooled_output = self.post_layernorm(x[:, 0, :])
212
+ return x, i, pooled_output
213
+
214
+ class LlavaProjector(torch.nn.Module):
215
+ def __init__(self, in_dim, out_dim, dtype, device, operations):
216
+ super().__init__()
217
+ self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
218
+ self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
219
+
220
+ def forward(self, x):
221
+ return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
222
+
223
+ class CLIPVisionModelProjection(torch.nn.Module):
224
+ def __init__(self, config_dict, dtype, device, operations):
225
+ super().__init__()
226
+ self.vision_model = CLIPVision(config_dict, dtype, device, operations)
227
+ if "projection_dim" in config_dict:
228
+ self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
229
+ else:
230
+ self.visual_projection = lambda a: a
231
+
232
+ if "llava3" == config_dict.get("projector_type", None):
233
+ self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
234
+ else:
235
+ self.multi_modal_projector = None
236
+
237
+ def forward(self, *args, **kwargs):
238
+ x = self.vision_model(*args, **kwargs)
239
+ out = self.visual_projection(x[2])
240
+ projected = None
241
+ if self.multi_modal_projector is not None:
242
+ projected = self.multi_modal_projector(x[1])
243
+
244
+ return (x[0], x[1], out, projected)
comfy/clip_vision.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
2
+ import os
3
+ import torch
4
+ import json
5
+ import logging
6
+
7
+ import comfy.ops
8
+ import comfy.model_patcher
9
+ import comfy.model_management
10
+ import comfy.utils
11
+ import comfy.clip_model
12
+ import comfy.image_encoders.dino2
13
+
14
+ class Output:
15
+ def __getitem__(self, key):
16
+ return getattr(self, key)
17
+ def __setitem__(self, key, item):
18
+ setattr(self, key, item)
19
+
20
+ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
21
+ image = image[:, :, :, :3] if image.shape[3] > 3 else image
22
+ mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
23
+ std = torch.tensor(std, device=image.device, dtype=image.dtype)
24
+ image = image.movedim(-1, 1)
25
+ if not (image.shape[2] == size and image.shape[3] == size):
26
+ if crop:
27
+ scale = (size / min(image.shape[2], image.shape[3]))
28
+ scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
29
+ else:
30
+ scale_size = (size, size)
31
+
32
+ image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
33
+ h = (image.shape[2] - size)//2
34
+ w = (image.shape[3] - size)//2
35
+ image = image[:,:,h:h+size,w:w+size]
36
+ image = torch.clip((255. * image), 0, 255).round() / 255.0
37
+ return (image - mean.view([3,1,1])) / std.view([3,1,1])
38
+
39
+ IMAGE_ENCODERS = {
40
+ "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
41
+ "siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
42
+ "dinov2": comfy.image_encoders.dino2.Dinov2Model,
43
+ }
44
+
45
+ class ClipVisionModel():
46
+ def __init__(self, json_config):
47
+ with open(json_config) as f:
48
+ config = json.load(f)
49
+
50
+ self.image_size = config.get("image_size", 224)
51
+ self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
52
+ self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
53
+ model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
54
+ self.load_device = comfy.model_management.text_encoder_device()
55
+ offload_device = comfy.model_management.text_encoder_offload_device()
56
+ self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
57
+ self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
58
+ self.model.eval()
59
+
60
+ self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
61
+
62
+ def load_sd(self, sd):
63
+ return self.model.load_state_dict(sd, strict=False)
64
+
65
+ def get_sd(self):
66
+ return self.model.state_dict()
67
+
68
+ def encode_image(self, image, crop=True):
69
+ comfy.model_management.load_model_gpu(self.patcher)
70
+ pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
71
+ out = self.model(pixel_values=pixel_values, intermediate_output=-2)
72
+
73
+ outputs = Output()
74
+ outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
75
+ outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
76
+ outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
77
+ outputs["mm_projected"] = out[3]
78
+ return outputs
79
+
80
+ def convert_to_transformers(sd, prefix):
81
+ sd_k = sd.keys()
82
+ if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
83
+ keys_to_replace = {
84
+ "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
85
+ "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
86
+ "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
87
+ "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
88
+ "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
89
+ "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
90
+ "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
91
+ }
92
+
93
+ for x in keys_to_replace:
94
+ if x in sd_k:
95
+ sd[keys_to_replace[x]] = sd.pop(x)
96
+
97
+ if "{}proj".format(prefix) in sd_k:
98
+ sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
99
+
100
+ sd = transformers_convert(sd, prefix, "vision_model.", 48)
101
+ else:
102
+ replace_prefix = {prefix: ""}
103
+ sd = state_dict_prefix_replace(sd, replace_prefix)
104
+ return sd
105
+
106
+ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
107
+ if convert_keys:
108
+ sd = convert_to_transformers(sd, prefix)
109
+ if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
110
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
111
+ elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
112
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
113
+ elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
114
+ embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
115
+ if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
116
+ if embed_shape == 729:
117
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
118
+ elif embed_shape == 1024:
119
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
120
+ elif embed_shape == 577:
121
+ if "multi_modal_projector.linear_1.bias" in sd:
122
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
123
+ else:
124
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
125
+ else:
126
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
127
+ elif "embeddings.patch_embeddings.projection.weight" in sd:
128
+ json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
129
+ else:
130
+ return None
131
+
132
+ clip = ClipVisionModel(json_config)
133
+ m, u = clip.load_sd(sd)
134
+ if len(m) > 0:
135
+ logging.warning("missing clip vision: {}".format(m))
136
+ u = set(u)
137
+ keys = list(sd.keys())
138
+ for k in keys:
139
+ if k not in u:
140
+ sd.pop(k)
141
+ return clip
142
+
143
+ def load(ckpt_path):
144
+ sd = load_torch_file(ckpt_path)
145
+ if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
146
+ return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
147
+ else:
148
+ return load_clipvision_from_sd(sd)
comfy/clip_vision_config_g.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "gelu",
5
+ "hidden_size": 1664,
6
+ "image_size": 224,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 8192,
10
+ "layer_norm_eps": 1e-05,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 48,
15
+ "patch_size": 14,
16
+ "projection_dim": 1280,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_h.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "gelu",
5
+ "hidden_size": 1280,
6
+ "image_size": 224,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 5120,
10
+ "layer_norm_eps": 1e-05,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 32,
15
+ "patch_size": 14,
16
+ "projection_dim": 1024,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_vitl.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "quick_gelu",
5
+ "hidden_size": 1024,
6
+ "image_size": 224,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 4096,
10
+ "layer_norm_eps": 1e-05,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 24,
15
+ "patch_size": 14,
16
+ "projection_dim": 768,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_vitl_336.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "quick_gelu",
5
+ "hidden_size": 1024,
6
+ "image_size": 336,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 4096,
10
+ "layer_norm_eps": 1e-5,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 24,
15
+ "patch_size": 14,
16
+ "projection_dim": 768,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_vitl_336_llava.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "quick_gelu",
5
+ "hidden_size": 1024,
6
+ "image_size": 336,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 4096,
10
+ "layer_norm_eps": 1e-5,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 24,
15
+ "patch_size": 14,
16
+ "projection_dim": 768,
17
+ "projector_type": "llava3",
18
+ "torch_dtype": "float32"
19
+ }
comfy/clip_vision_siglip_384.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "num_channels": 3,
3
+ "hidden_act": "gelu_pytorch_tanh",
4
+ "hidden_size": 1152,
5
+ "image_size": 384,
6
+ "intermediate_size": 4304,
7
+ "model_type": "siglip_vision_model",
8
+ "num_attention_heads": 16,
9
+ "num_hidden_layers": 27,
10
+ "patch_size": 14,
11
+ "image_mean": [0.5, 0.5, 0.5],
12
+ "image_std": [0.5, 0.5, 0.5]
13
+ }
comfy/clip_vision_siglip_512.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "num_channels": 3,
3
+ "hidden_act": "gelu_pytorch_tanh",
4
+ "hidden_size": 1152,
5
+ "image_size": 512,
6
+ "intermediate_size": 4304,
7
+ "model_type": "siglip_vision_model",
8
+ "num_attention_heads": 16,
9
+ "num_hidden_layers": 27,
10
+ "patch_size": 16,
11
+ "image_mean": [0.5, 0.5, 0.5],
12
+ "image_std": [0.5, 0.5, 0.5]
13
+ }
comfy/comfy_types/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Comfy Typing
2
+ ## Type hinting for ComfyUI Node development
3
+
4
+ This module provides type hinting and concrete convenience types for node developers.
5
+ If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
6
+
7
+ ```python
8
+ from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
9
+
10
+ class ExampleNode(ComfyNodeABC):
11
+ @classmethod
12
+ def INPUT_TYPES(s) -> InputTypeDict:
13
+ return {"required": {}}
14
+ ```
15
+
16
+ Full example is in [examples/example_nodes.py](examples/example_nodes.py).
17
+
18
+ # Types
19
+ A few primary types are documented below. More complete information is available via the docstrings on each type.
20
+
21
+ ## `IO`
22
+
23
+ A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
24
+
25
+ - `ANY`: `"*"`
26
+ - `NUMBER`: `"FLOAT,INT"`
27
+ - `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
28
+
29
+ ## `ComfyNodeABC`
30
+
31
+ An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
32
+
33
+ ### Type hinting for `INPUT_TYPES`
34
+
35
+ ![INPUT_TYPES auto-completion in Visual Studio Code](examples/input_types.png)
36
+
37
+ ### `INPUT_TYPES` return dict
38
+
39
+ ![INPUT_TYPES return value type hinting in Visual Studio Code](examples/required_hint.png)
40
+
41
+ ### Options for individual inputs
42
+
43
+ ![INPUT_TYPES return value option auto-completion in Visual Studio Code](examples/input_options.png)
comfy/comfy_types/__init__.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Callable, Protocol, TypedDict, Optional, List
3
+ from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin, FileLocator
4
+
5
+
6
+ class UnetApplyFunction(Protocol):
7
+ """Function signature protocol on comfy.model_base.BaseModel.apply_model"""
8
+
9
+ def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
10
+ pass
11
+
12
+
13
+ class UnetApplyConds(TypedDict):
14
+ """Optional conditions for unet apply function."""
15
+
16
+ c_concat: Optional[torch.Tensor]
17
+ c_crossattn: Optional[torch.Tensor]
18
+ control: Optional[torch.Tensor]
19
+ transformer_options: Optional[dict]
20
+
21
+
22
+ class UnetParams(TypedDict):
23
+ # Tensor of shape [B, C, H, W]
24
+ input: torch.Tensor
25
+ # Tensor of shape [B]
26
+ timestep: torch.Tensor
27
+ c: UnetApplyConds
28
+ # List of [0, 1], [0], [1], ...
29
+ # 0 means conditional, 1 means conditional unconditional
30
+ cond_or_uncond: List[int]
31
+
32
+
33
+ UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
34
+
35
+
36
+ __all__ = [
37
+ "UnetWrapperFunction",
38
+ UnetApplyConds.__name__,
39
+ UnetParams.__name__,
40
+ UnetApplyFunction.__name__,
41
+ IO.__name__,
42
+ InputTypeDict.__name__,
43
+ ComfyNodeABC.__name__,
44
+ CheckLazyMixin.__name__,
45
+ FileLocator.__name__,
46
+ ]
comfy/comfy_types/examples/example_nodes.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
2
+ from inspect import cleandoc
3
+
4
+
5
+ class ExampleNode(ComfyNodeABC):
6
+ """An example node that just adds 1 to an input integer.
7
+
8
+ * Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
9
+ * This node is intended as an example for developers only.
10
+ """
11
+
12
+ DESCRIPTION = cleandoc(__doc__)
13
+ CATEGORY = "examples"
14
+
15
+ @classmethod
16
+ def INPUT_TYPES(s) -> InputTypeDict:
17
+ return {
18
+ "required": {
19
+ "input_int": (IO.INT, {"defaultInput": True}),
20
+ }
21
+ }
22
+
23
+ RETURN_TYPES = (IO.INT,)
24
+ RETURN_NAMES = ("input_plus_one",)
25
+ FUNCTION = "execute"
26
+
27
+ def execute(self, input_int: int):
28
+ return (input_int + 1,)
comfy/comfy_types/examples/input_options.png ADDED
comfy/comfy_types/examples/input_types.png ADDED
comfy/comfy_types/examples/required_hint.png ADDED
comfy/comfy_types/node_typing.py ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Comfy-specific type hinting"""
2
+
3
+ from __future__ import annotations
4
+ from typing import Literal, TypedDict, Optional
5
+ from typing_extensions import NotRequired
6
+ from abc import ABC, abstractmethod
7
+ from enum import Enum
8
+
9
+
10
+ class StrEnum(str, Enum):
11
+ """Base class for string enums. Python's StrEnum is not available until 3.11."""
12
+
13
+ def __str__(self) -> str:
14
+ return self.value
15
+
16
+
17
+ class IO(StrEnum):
18
+ """Node input/output data types.
19
+
20
+ Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
21
+ """
22
+
23
+ STRING = "STRING"
24
+ IMAGE = "IMAGE"
25
+ MASK = "MASK"
26
+ LATENT = "LATENT"
27
+ BOOLEAN = "BOOLEAN"
28
+ INT = "INT"
29
+ FLOAT = "FLOAT"
30
+ COMBO = "COMBO"
31
+ CONDITIONING = "CONDITIONING"
32
+ SAMPLER = "SAMPLER"
33
+ SIGMAS = "SIGMAS"
34
+ GUIDER = "GUIDER"
35
+ NOISE = "NOISE"
36
+ CLIP = "CLIP"
37
+ CONTROL_NET = "CONTROL_NET"
38
+ VAE = "VAE"
39
+ MODEL = "MODEL"
40
+ LORA_MODEL = "LORA_MODEL"
41
+ LOSS_MAP = "LOSS_MAP"
42
+ CLIP_VISION = "CLIP_VISION"
43
+ CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
44
+ STYLE_MODEL = "STYLE_MODEL"
45
+ GLIGEN = "GLIGEN"
46
+ UPSCALE_MODEL = "UPSCALE_MODEL"
47
+ AUDIO = "AUDIO"
48
+ WEBCAM = "WEBCAM"
49
+ POINT = "POINT"
50
+ FACE_ANALYSIS = "FACE_ANALYSIS"
51
+ BBOX = "BBOX"
52
+ SEGS = "SEGS"
53
+ VIDEO = "VIDEO"
54
+
55
+ ANY = "*"
56
+ """Always matches any type, but at a price.
57
+
58
+ Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
59
+ """
60
+ NUMBER = "FLOAT,INT"
61
+ """A float or an int - could be either"""
62
+ PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
63
+ """Could be any of: string, float, int, or bool"""
64
+
65
+ def __ne__(self, value: object) -> bool:
66
+ if self == "*" or value == "*":
67
+ return False
68
+ if not isinstance(value, str):
69
+ return True
70
+ a = frozenset(self.split(","))
71
+ b = frozenset(value.split(","))
72
+ return not (b.issubset(a) or a.issubset(b))
73
+
74
+
75
+ class RemoteInputOptions(TypedDict):
76
+ route: str
77
+ """The route to the remote source."""
78
+ refresh_button: bool
79
+ """Specifies whether to show a refresh button in the UI below the widget."""
80
+ control_after_refresh: Literal["first", "last"]
81
+ """Specifies the control after the refresh button is clicked. If "first", the first item will be automatically selected, and so on."""
82
+ timeout: int
83
+ """The maximum amount of time to wait for a response from the remote source in milliseconds."""
84
+ max_retries: int
85
+ """The maximum number of retries before aborting the request."""
86
+ refresh: int
87
+ """The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
88
+
89
+
90
+ class MultiSelectOptions(TypedDict):
91
+ placeholder: NotRequired[str]
92
+ """The placeholder text to display in the multi-select widget when no items are selected."""
93
+ chip: NotRequired[bool]
94
+ """Specifies whether to use chips instead of comma separated values for the multi-select widget."""
95
+
96
+
97
+ class InputTypeOptions(TypedDict):
98
+ """Provides type hinting for the return type of the INPUT_TYPES node function.
99
+
100
+ Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
101
+
102
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
103
+ """
104
+
105
+ default: NotRequired[bool | str | float | int | list | tuple]
106
+ """The default value of the widget"""
107
+ defaultInput: NotRequired[bool]
108
+ """@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
109
+ - defaultInput on required inputs should be dropped.
110
+ - defaultInput on optional inputs should be replaced with forceInput.
111
+ Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
112
+ """
113
+ forceInput: NotRequired[bool]
114
+ """Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
115
+ lazy: NotRequired[bool]
116
+ """Declares that this input uses lazy evaluation"""
117
+ rawLink: NotRequired[bool]
118
+ """When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
119
+ tooltip: NotRequired[str]
120
+ """Tooltip for the input (or widget), shown on pointer hover"""
121
+ socketless: NotRequired[bool]
122
+ """All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
123
+ Available from frontend v1.17.5
124
+ Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
125
+ """
126
+ widgetType: NotRequired[str]
127
+ """Specifies a type to be used for widget initialization if different from the input type.
128
+ Available from frontend v1.18.0
129
+ https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
130
+ # class InputTypeNumber(InputTypeOptions):
131
+ # default: float | int
132
+ min: NotRequired[float]
133
+ """The minimum value of a number (``FLOAT`` | ``INT``)"""
134
+ max: NotRequired[float]
135
+ """The maximum value of a number (``FLOAT`` | ``INT``)"""
136
+ step: NotRequired[float]
137
+ """The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
138
+ round: NotRequired[float]
139
+ """Floats are rounded by this value (``FLOAT``)"""
140
+ # class InputTypeBoolean(InputTypeOptions):
141
+ # default: bool
142
+ label_on: NotRequired[str]
143
+ """The label to use in the UI when the bool is True (``BOOLEAN``)"""
144
+ label_off: NotRequired[str]
145
+ """The label to use in the UI when the bool is False (``BOOLEAN``)"""
146
+ # class InputTypeString(InputTypeOptions):
147
+ # default: str
148
+ multiline: NotRequired[bool]
149
+ """Use a multiline text box (``STRING``)"""
150
+ placeholder: NotRequired[str]
151
+ """Placeholder text to display in the UI when empty (``STRING``)"""
152
+ # Deprecated:
153
+ # defaultVal: str
154
+ dynamicPrompts: NotRequired[bool]
155
+ """Causes the front-end to evaluate dynamic prompts (``STRING``)"""
156
+ # class InputTypeCombo(InputTypeOptions):
157
+ image_upload: NotRequired[bool]
158
+ """Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
159
+ image_folder: NotRequired[Literal["input", "output", "temp"]]
160
+ """Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
161
+ """
162
+ remote: NotRequired[RemoteInputOptions]
163
+ """Specifies the configuration for a remote input.
164
+ Available after ComfyUI frontend v1.9.7
165
+ https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
166
+ control_after_generate: NotRequired[bool]
167
+ """Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
168
+ options: NotRequired[list[str | int | float]]
169
+ """COMBO type only. Specifies the selectable options for the combo widget.
170
+ Prefer:
171
+ ["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
172
+ Over:
173
+ [["Option 1", "Option 2", "Option 3"]]
174
+ """
175
+ multi_select: NotRequired[MultiSelectOptions]
176
+ """COMBO type only. Specifies the configuration for a multi-select widget.
177
+ Available after ComfyUI frontend v1.13.4
178
+ https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
179
+
180
+
181
+ class HiddenInputTypeDict(TypedDict):
182
+ """Provides type hinting for the hidden entry of node INPUT_TYPES."""
183
+
184
+ node_id: NotRequired[Literal["UNIQUE_ID"]]
185
+ """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
186
+ unique_id: NotRequired[Literal["UNIQUE_ID"]]
187
+ """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
188
+ prompt: NotRequired[Literal["PROMPT"]]
189
+ """PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
190
+ extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
191
+ """EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
192
+ dynprompt: NotRequired[Literal["DYNPROMPT"]]
193
+ """DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
194
+
195
+
196
+ class InputTypeDict(TypedDict):
197
+ """Provides type hinting for node INPUT_TYPES.
198
+
199
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
200
+ """
201
+
202
+ required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
203
+ """Describes all inputs that must be connected for the node to execute."""
204
+ optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
205
+ """Describes inputs which do not need to be connected."""
206
+ hidden: NotRequired[HiddenInputTypeDict]
207
+ """Offers advanced functionality and server-client communication.
208
+
209
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
210
+ """
211
+
212
+
213
+ class ComfyNodeABC(ABC):
214
+ """Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
215
+
216
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview
217
+ """
218
+
219
+ DESCRIPTION: str
220
+ """Node description, shown as a tooltip when hovering over the node.
221
+
222
+ Usage::
223
+
224
+ # Explicitly define the description
225
+ DESCRIPTION = "Example description here."
226
+
227
+ # Use the docstring of the node class.
228
+ DESCRIPTION = cleandoc(__doc__)
229
+ """
230
+ CATEGORY: str
231
+ """The category of the node, as per the "Add Node" menu.
232
+
233
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#category
234
+ """
235
+ EXPERIMENTAL: bool
236
+ """Flags a node as experimental, informing users that it may change or not work as expected."""
237
+ DEPRECATED: bool
238
+ """Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
239
+ API_NODE: Optional[bool]
240
+ """Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
241
+
242
+ @classmethod
243
+ @abstractmethod
244
+ def INPUT_TYPES(s) -> InputTypeDict:
245
+ """Defines node inputs.
246
+
247
+ * Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
248
+ * The ``optional`` key can be added to describe inputs which do not need to be connected.
249
+ * The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
250
+
251
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#input-types
252
+ """
253
+ return {"required": {}}
254
+
255
+ OUTPUT_NODE: bool
256
+ """Flags this node as an output node, causing any inputs it requires to be executed.
257
+
258
+ If a node is not connected to any output nodes, that node will not be executed. Usage::
259
+
260
+ OUTPUT_NODE = True
261
+
262
+ From the docs:
263
+
264
+ By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
265
+
266
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
267
+ """
268
+ INPUT_IS_LIST: bool
269
+ """A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
270
+
271
+ All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
272
+
273
+ From the docs:
274
+
275
+ A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
276
+
277
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
278
+ """
279
+ OUTPUT_IS_LIST: tuple[bool, ...]
280
+ """A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
281
+
282
+ Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
283
+
284
+ A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
285
+
286
+ RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
287
+ OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
288
+
289
+ From the docs:
290
+
291
+ In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
292
+ the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
293
+ specifying which outputs which should be so treated.
294
+
295
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
296
+ """
297
+
298
+ RETURN_TYPES: tuple[IO, ...]
299
+ """A tuple representing the outputs of this node.
300
+
301
+ Usage::
302
+
303
+ RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
304
+
305
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
306
+ """
307
+ RETURN_NAMES: tuple[str, ...]
308
+ """The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
309
+
310
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
311
+ """
312
+ OUTPUT_TOOLTIPS: tuple[str, ...]
313
+ """A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
314
+ FUNCTION: str
315
+ """The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
316
+
317
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#function
318
+ """
319
+
320
+
321
+ class CheckLazyMixin:
322
+ """Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
323
+
324
+ def check_lazy_status(self, **kwargs) -> list[str]:
325
+ """Returns a list of input names that should be evaluated.
326
+
327
+ This basic mixin impl. requires all inputs.
328
+
329
+ :kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
330
+ When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
331
+
332
+ Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
333
+ Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
334
+
335
+ Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lazy_evaluation#defining-check-lazy-status
336
+ """
337
+
338
+ need = [name for name in kwargs if kwargs[name] is None]
339
+ return need
340
+
341
+
342
+ class FileLocator(TypedDict):
343
+ """Provides type hinting for the file location"""
344
+
345
+ filename: str
346
+ """The filename of the file."""
347
+ subfolder: str
348
+ """The subfolder of the file."""
349
+ type: Literal["input", "output", "temp"]
350
+ """The root folder of the file."""
comfy/conds.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+ import comfy.utils
4
+
5
+
6
+ class CONDRegular:
7
+ def __init__(self, cond):
8
+ self.cond = cond
9
+
10
+ def _copy_with(self, cond):
11
+ return self.__class__(cond)
12
+
13
+ def process_cond(self, batch_size, device, **kwargs):
14
+ return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
15
+
16
+ def can_concat(self, other):
17
+ if self.cond.shape != other.cond.shape:
18
+ return False
19
+ return True
20
+
21
+ def concat(self, others):
22
+ conds = [self.cond]
23
+ for x in others:
24
+ conds.append(x.cond)
25
+ return torch.cat(conds)
26
+
27
+ def size(self):
28
+ return list(self.cond.size())
29
+
30
+
31
+ class CONDNoiseShape(CONDRegular):
32
+ def process_cond(self, batch_size, device, area, **kwargs):
33
+ data = self.cond
34
+ if area is not None:
35
+ dims = len(area) // 2
36
+ for i in range(dims):
37
+ data = data.narrow(i + 2, area[i + dims], area[i])
38
+
39
+ return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
40
+
41
+
42
+ class CONDCrossAttn(CONDRegular):
43
+ def can_concat(self, other):
44
+ s1 = self.cond.shape
45
+ s2 = other.cond.shape
46
+ if s1 != s2:
47
+ if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
48
+ return False
49
+
50
+ mult_min = math.lcm(s1[1], s2[1])
51
+ diff = mult_min // min(s1[1], s2[1])
52
+ if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
53
+ return False
54
+ return True
55
+
56
+ def concat(self, others):
57
+ conds = [self.cond]
58
+ crossattn_max_len = self.cond.shape[1]
59
+ for x in others:
60
+ c = x.cond
61
+ crossattn_max_len = math.lcm(crossattn_max_len, c.shape[1])
62
+ conds.append(c)
63
+
64
+ out = []
65
+ for c in conds:
66
+ if c.shape[1] < crossattn_max_len:
67
+ c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
68
+ out.append(c)
69
+ return torch.cat(out)
70
+
71
+
72
+ class CONDConstant(CONDRegular):
73
+ def __init__(self, cond):
74
+ self.cond = cond
75
+
76
+ def process_cond(self, batch_size, device, **kwargs):
77
+ return self._copy_with(self.cond)
78
+
79
+ def can_concat(self, other):
80
+ if self.cond != other.cond:
81
+ return False
82
+ return True
83
+
84
+ def concat(self, others):
85
+ return self.cond
86
+
87
+ def size(self):
88
+ return [1]
89
+
90
+
91
+ class CONDList(CONDRegular):
92
+ def __init__(self, cond):
93
+ self.cond = cond
94
+
95
+ def process_cond(self, batch_size, device, **kwargs):
96
+ out = []
97
+ for c in self.cond:
98
+ out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
99
+
100
+ return self._copy_with(out)
101
+
102
+ def can_concat(self, other):
103
+ if len(self.cond) != len(other.cond):
104
+ return False
105
+ for i in range(len(self.cond)):
106
+ if self.cond[i].shape != other.cond[i].shape:
107
+ return False
108
+
109
+ return True
110
+
111
+ def concat(self, others):
112
+ out = []
113
+ for i in range(len(self.cond)):
114
+ o = [self.cond[i]]
115
+ for x in others:
116
+ o.append(x.cond[i])
117
+ out.append(torch.cat(o))
118
+
119
+ return out
120
+
121
+ def size(self): # hackish implementation to make the mem estimation work
122
+ o = 0
123
+ c = 1
124
+ for c in self.cond:
125
+ size = c.size()
126
+ o += math.prod(size)
127
+ if len(size) > 1:
128
+ c = size[1]
129
+
130
+ return [1, c, o // c]
comfy/controlnet.py ADDED
@@ -0,0 +1,858 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Comfy
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+
20
+ import torch
21
+ from enum import Enum
22
+ import math
23
+ import os
24
+ import logging
25
+ import comfy.utils
26
+ import comfy.model_management
27
+ import comfy.model_detection
28
+ import comfy.model_patcher
29
+ import comfy.ops
30
+ import comfy.latent_formats
31
+
32
+ import comfy.cldm.cldm
33
+ import comfy.t2i_adapter.adapter
34
+ import comfy.ldm.cascade.controlnet
35
+ import comfy.cldm.mmdit
36
+ import comfy.ldm.hydit.controlnet
37
+ import comfy.ldm.flux.controlnet
38
+ import comfy.cldm.dit_embedder
39
+ from typing import TYPE_CHECKING
40
+ if TYPE_CHECKING:
41
+ from comfy.hooks import HookGroup
42
+
43
+
44
+ def broadcast_image_to(tensor, target_batch_size, batched_number):
45
+ current_batch_size = tensor.shape[0]
46
+ #print(current_batch_size, target_batch_size)
47
+ if current_batch_size == 1:
48
+ return tensor
49
+
50
+ per_batch = target_batch_size // batched_number
51
+ tensor = tensor[:per_batch]
52
+
53
+ if per_batch > tensor.shape[0]:
54
+ tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
55
+
56
+ current_batch_size = tensor.shape[0]
57
+ if current_batch_size == target_batch_size:
58
+ return tensor
59
+ else:
60
+ return torch.cat([tensor] * batched_number, dim=0)
61
+
62
+ class StrengthType(Enum):
63
+ CONSTANT = 1
64
+ LINEAR_UP = 2
65
+
66
+ class ControlBase:
67
+ def __init__(self):
68
+ self.cond_hint_original = None
69
+ self.cond_hint = None
70
+ self.strength = 1.0
71
+ self.timestep_percent_range = (0.0, 1.0)
72
+ self.latent_format = None
73
+ self.vae = None
74
+ self.global_average_pooling = False
75
+ self.timestep_range = None
76
+ self.compression_ratio = 8
77
+ self.upscale_algorithm = 'nearest-exact'
78
+ self.extra_args = {}
79
+ self.previous_controlnet = None
80
+ self.extra_conds = []
81
+ self.strength_type = StrengthType.CONSTANT
82
+ self.concat_mask = False
83
+ self.extra_concat_orig = []
84
+ self.extra_concat = None
85
+ self.extra_hooks: HookGroup = None
86
+ self.preprocess_image = lambda a: a
87
+
88
+ def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
89
+ self.cond_hint_original = cond_hint
90
+ self.strength = strength
91
+ self.timestep_percent_range = timestep_percent_range
92
+ if self.latent_format is not None:
93
+ if vae is None:
94
+ logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
95
+ self.vae = vae
96
+ self.extra_concat_orig = extra_concat.copy()
97
+ if self.concat_mask and len(self.extra_concat_orig) == 0:
98
+ self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
99
+ return self
100
+
101
+ def pre_run(self, model, percent_to_timestep_function):
102
+ self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
103
+ if self.previous_controlnet is not None:
104
+ self.previous_controlnet.pre_run(model, percent_to_timestep_function)
105
+
106
+ def set_previous_controlnet(self, controlnet):
107
+ self.previous_controlnet = controlnet
108
+ return self
109
+
110
+ def cleanup(self):
111
+ if self.previous_controlnet is not None:
112
+ self.previous_controlnet.cleanup()
113
+
114
+ self.cond_hint = None
115
+ self.extra_concat = None
116
+ self.timestep_range = None
117
+
118
+ def get_models(self):
119
+ out = []
120
+ if self.previous_controlnet is not None:
121
+ out += self.previous_controlnet.get_models()
122
+ return out
123
+
124
+ def get_extra_hooks(self):
125
+ out = []
126
+ if self.extra_hooks is not None:
127
+ out.append(self.extra_hooks)
128
+ if self.previous_controlnet is not None:
129
+ out += self.previous_controlnet.get_extra_hooks()
130
+ return out
131
+
132
+ def copy_to(self, c):
133
+ c.cond_hint_original = self.cond_hint_original
134
+ c.strength = self.strength
135
+ c.timestep_percent_range = self.timestep_percent_range
136
+ c.global_average_pooling = self.global_average_pooling
137
+ c.compression_ratio = self.compression_ratio
138
+ c.upscale_algorithm = self.upscale_algorithm
139
+ c.latent_format = self.latent_format
140
+ c.extra_args = self.extra_args.copy()
141
+ c.vae = self.vae
142
+ c.extra_conds = self.extra_conds.copy()
143
+ c.strength_type = self.strength_type
144
+ c.concat_mask = self.concat_mask
145
+ c.extra_concat_orig = self.extra_concat_orig.copy()
146
+ c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
147
+ c.preprocess_image = self.preprocess_image
148
+
149
+ def inference_memory_requirements(self, dtype):
150
+ if self.previous_controlnet is not None:
151
+ return self.previous_controlnet.inference_memory_requirements(dtype)
152
+ return 0
153
+
154
+ def control_merge(self, control, control_prev, output_dtype):
155
+ out = {'input':[], 'middle':[], 'output': []}
156
+
157
+ for key in control:
158
+ control_output = control[key]
159
+ applied_to = set()
160
+ for i in range(len(control_output)):
161
+ x = control_output[i]
162
+ if x is not None:
163
+ if self.global_average_pooling:
164
+ x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
165
+
166
+ if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
167
+ applied_to.add(x)
168
+ if self.strength_type == StrengthType.CONSTANT:
169
+ x *= self.strength
170
+ elif self.strength_type == StrengthType.LINEAR_UP:
171
+ x *= (self.strength ** float(len(control_output) - i))
172
+
173
+ if output_dtype is not None and x.dtype != output_dtype:
174
+ x = x.to(output_dtype)
175
+
176
+ out[key].append(x)
177
+
178
+ if control_prev is not None:
179
+ for x in ['input', 'middle', 'output']:
180
+ o = out[x]
181
+ for i in range(len(control_prev[x])):
182
+ prev_val = control_prev[x][i]
183
+ if i >= len(o):
184
+ o.append(prev_val)
185
+ elif prev_val is not None:
186
+ if o[i] is None:
187
+ o[i] = prev_val
188
+ else:
189
+ if o[i].shape[0] < prev_val.shape[0]:
190
+ o[i] = prev_val + o[i]
191
+ else:
192
+ o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
193
+ return out
194
+
195
+ def set_extra_arg(self, argument, value=None):
196
+ self.extra_args[argument] = value
197
+
198
+
199
+ class ControlNet(ControlBase):
200
+ def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
201
+ super().__init__()
202
+ self.control_model = control_model
203
+ self.load_device = load_device
204
+ if control_model is not None:
205
+ self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
206
+
207
+ self.compression_ratio = compression_ratio
208
+ self.global_average_pooling = global_average_pooling
209
+ self.model_sampling_current = None
210
+ self.manual_cast_dtype = manual_cast_dtype
211
+ self.latent_format = latent_format
212
+ self.extra_conds += extra_conds
213
+ self.strength_type = strength_type
214
+ self.concat_mask = concat_mask
215
+ self.preprocess_image = preprocess_image
216
+
217
+ def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
218
+ control_prev = None
219
+ if self.previous_controlnet is not None:
220
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
221
+
222
+ if self.timestep_range is not None:
223
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
224
+ if control_prev is not None:
225
+ return control_prev
226
+ else:
227
+ return None
228
+
229
+ dtype = self.control_model.dtype
230
+ if self.manual_cast_dtype is not None:
231
+ dtype = self.manual_cast_dtype
232
+
233
+ if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
234
+ if self.cond_hint is not None:
235
+ del self.cond_hint
236
+ self.cond_hint = None
237
+ compression_ratio = self.compression_ratio
238
+ if self.vae is not None:
239
+ compression_ratio *= self.vae.downscale_ratio
240
+ else:
241
+ if self.latent_format is not None:
242
+ raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
243
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
244
+ self.cond_hint = self.preprocess_image(self.cond_hint)
245
+ if self.vae is not None:
246
+ loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
247
+ self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
248
+ comfy.model_management.load_models_gpu(loaded_models)
249
+ if self.latent_format is not None:
250
+ self.cond_hint = self.latent_format.process_in(self.cond_hint)
251
+ if len(self.extra_concat_orig) > 0:
252
+ to_concat = []
253
+ for c in self.extra_concat_orig:
254
+ c = c.to(self.cond_hint.device)
255
+ c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
256
+ to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
257
+ self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
258
+
259
+ self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
260
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
261
+ self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
262
+
263
+ context = cond.get('crossattn_controlnet', cond['c_crossattn'])
264
+ extra = self.extra_args.copy()
265
+ for c in self.extra_conds:
266
+ temp = cond.get(c, None)
267
+ if temp is not None:
268
+ extra[c] = temp.to(dtype)
269
+
270
+ timestep = self.model_sampling_current.timestep(t)
271
+ x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
272
+
273
+ control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
274
+ return self.control_merge(control, control_prev, output_dtype=None)
275
+
276
+ def copy(self):
277
+ c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
278
+ c.control_model = self.control_model
279
+ c.control_model_wrapped = self.control_model_wrapped
280
+ self.copy_to(c)
281
+ return c
282
+
283
+ def get_models(self):
284
+ out = super().get_models()
285
+ out.append(self.control_model_wrapped)
286
+ return out
287
+
288
+ def pre_run(self, model, percent_to_timestep_function):
289
+ super().pre_run(model, percent_to_timestep_function)
290
+ self.model_sampling_current = model.model_sampling
291
+
292
+ def cleanup(self):
293
+ self.model_sampling_current = None
294
+ super().cleanup()
295
+
296
+ class ControlLoraOps:
297
+ class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
298
+ def __init__(self, in_features: int, out_features: int, bias: bool = True,
299
+ device=None, dtype=None) -> None:
300
+ super().__init__()
301
+ self.in_features = in_features
302
+ self.out_features = out_features
303
+ self.weight = None
304
+ self.up = None
305
+ self.down = None
306
+ self.bias = None
307
+
308
+ def forward(self, input):
309
+ weight, bias = comfy.ops.cast_bias_weight(self, input)
310
+ if self.up is not None:
311
+ return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
312
+ else:
313
+ return torch.nn.functional.linear(input, weight, bias)
314
+
315
+ class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
316
+ def __init__(
317
+ self,
318
+ in_channels,
319
+ out_channels,
320
+ kernel_size,
321
+ stride=1,
322
+ padding=0,
323
+ dilation=1,
324
+ groups=1,
325
+ bias=True,
326
+ padding_mode='zeros',
327
+ device=None,
328
+ dtype=None
329
+ ):
330
+ super().__init__()
331
+ self.in_channels = in_channels
332
+ self.out_channels = out_channels
333
+ self.kernel_size = kernel_size
334
+ self.stride = stride
335
+ self.padding = padding
336
+ self.dilation = dilation
337
+ self.transposed = False
338
+ self.output_padding = 0
339
+ self.groups = groups
340
+ self.padding_mode = padding_mode
341
+
342
+ self.weight = None
343
+ self.bias = None
344
+ self.up = None
345
+ self.down = None
346
+
347
+
348
+ def forward(self, input):
349
+ weight, bias = comfy.ops.cast_bias_weight(self, input)
350
+ if self.up is not None:
351
+ return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
352
+ else:
353
+ return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
354
+
355
+
356
+ class ControlLora(ControlNet):
357
+ def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
358
+ ControlBase.__init__(self)
359
+ self.control_weights = control_weights
360
+ self.global_average_pooling = global_average_pooling
361
+ self.extra_conds += ["y"]
362
+
363
+ def pre_run(self, model, percent_to_timestep_function):
364
+ super().pre_run(model, percent_to_timestep_function)
365
+ controlnet_config = model.model_config.unet_config.copy()
366
+ controlnet_config.pop("out_channels")
367
+ controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
368
+ self.manual_cast_dtype = model.manual_cast_dtype
369
+ dtype = model.get_dtype()
370
+ if self.manual_cast_dtype is None:
371
+ class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
372
+ pass
373
+ else:
374
+ class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
375
+ pass
376
+ dtype = self.manual_cast_dtype
377
+
378
+ controlnet_config["operations"] = control_lora_ops
379
+ controlnet_config["dtype"] = dtype
380
+ self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
381
+ self.control_model.to(comfy.model_management.get_torch_device())
382
+ diffusion_model = model.diffusion_model
383
+ sd = diffusion_model.state_dict()
384
+
385
+ for k in sd:
386
+ weight = sd[k]
387
+ try:
388
+ comfy.utils.set_attr_param(self.control_model, k, weight)
389
+ except:
390
+ pass
391
+
392
+ for k in self.control_weights:
393
+ if (k not in {"lora_controlnet"}):
394
+ if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
395
+ comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
396
+
397
+ def copy(self):
398
+ c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
399
+ self.copy_to(c)
400
+ return c
401
+
402
+ def cleanup(self):
403
+ del self.control_model
404
+ self.control_model = None
405
+ super().cleanup()
406
+
407
+ def get_models(self):
408
+ out = ControlBase.get_models(self)
409
+ return out
410
+
411
+ def inference_memory_requirements(self, dtype):
412
+ return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
413
+
414
+ def controlnet_config(sd, model_options={}):
415
+ model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
416
+
417
+ unet_dtype = model_options.get("dtype", None)
418
+ if unet_dtype is None:
419
+ weight_dtype = comfy.utils.weight_dtype(sd)
420
+
421
+ supported_inference_dtypes = list(model_config.supported_inference_dtypes)
422
+ unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype)
423
+
424
+ load_device = comfy.model_management.get_torch_device()
425
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
426
+
427
+ operations = model_options.get("custom_operations", None)
428
+ if operations is None:
429
+ operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
430
+
431
+ offload_device = comfy.model_management.unet_offload_device()
432
+ return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
433
+
434
+ def controlnet_load_state_dict(control_model, sd):
435
+ missing, unexpected = control_model.load_state_dict(sd, strict=False)
436
+
437
+ if len(missing) > 0:
438
+ logging.warning("missing controlnet keys: {}".format(missing))
439
+
440
+ if len(unexpected) > 0:
441
+ logging.debug("unexpected controlnet keys: {}".format(unexpected))
442
+ return control_model
443
+
444
+
445
+ def load_controlnet_mmdit(sd, model_options={}):
446
+ new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
447
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
448
+ num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
449
+ for k in sd:
450
+ new_sd[k] = sd[k]
451
+
452
+ concat_mask = False
453
+ control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
454
+ if control_latent_channels == 17: #inpaint controlnet
455
+ concat_mask = True
456
+
457
+ control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
458
+ control_model = controlnet_load_state_dict(control_model, new_sd)
459
+
460
+ latent_format = comfy.latent_formats.SD3()
461
+ latent_format.shift_factor = 0 #SD3 controlnet weirdness
462
+ control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
463
+ return control
464
+
465
+
466
+ class ControlNetSD35(ControlNet):
467
+ def pre_run(self, model, percent_to_timestep_function):
468
+ if self.control_model.double_y_emb:
469
+ missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
470
+ else:
471
+ missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
472
+ super().pre_run(model, percent_to_timestep_function)
473
+
474
+ def copy(self):
475
+ c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
476
+ c.control_model = self.control_model
477
+ c.control_model_wrapped = self.control_model_wrapped
478
+ self.copy_to(c)
479
+ return c
480
+
481
+ def load_controlnet_sd35(sd, model_options={}):
482
+ control_type = -1
483
+ if "control_type" in sd:
484
+ control_type = round(sd.pop("control_type").item())
485
+
486
+ # blur_cnet = control_type == 0
487
+ canny_cnet = control_type == 1
488
+ depth_cnet = control_type == 2
489
+
490
+ new_sd = {}
491
+ for k in comfy.utils.MMDIT_MAP_BASIC:
492
+ if k[1] in sd:
493
+ new_sd[k[0]] = sd.pop(k[1])
494
+ for k in sd:
495
+ new_sd[k] = sd[k]
496
+ sd = new_sd
497
+
498
+ y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
499
+ depth = y_emb_shape[0] // 64
500
+ hidden_size = 64 * depth
501
+ num_heads = depth
502
+ head_dim = hidden_size // num_heads
503
+ num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
504
+
505
+ load_device = comfy.model_management.get_torch_device()
506
+ offload_device = comfy.model_management.unet_offload_device()
507
+ unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
508
+
509
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
510
+
511
+ operations = model_options.get("custom_operations", None)
512
+ if operations is None:
513
+ operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
514
+
515
+ control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
516
+ patch_size=2,
517
+ in_chans=16,
518
+ num_layers=num_blocks,
519
+ main_model_double=depth,
520
+ double_y_emb=y_emb_shape[0] == y_emb_shape[1],
521
+ attention_head_dim=head_dim,
522
+ num_attention_heads=num_heads,
523
+ adm_in_channels=2048,
524
+ device=offload_device,
525
+ dtype=unet_dtype,
526
+ operations=operations)
527
+
528
+ control_model = controlnet_load_state_dict(control_model, sd)
529
+
530
+ latent_format = comfy.latent_formats.SD3()
531
+ preprocess_image = lambda a: a
532
+ if canny_cnet:
533
+ preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
534
+ elif depth_cnet:
535
+ preprocess_image = lambda a: 1.0 - a
536
+
537
+ control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
538
+ return control
539
+
540
+
541
+
542
+ def load_controlnet_hunyuandit(controlnet_data, model_options={}):
543
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
544
+
545
+ control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
546
+ control_model = controlnet_load_state_dict(control_model, controlnet_data)
547
+
548
+ latent_format = comfy.latent_formats.SDXL()
549
+ extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
550
+ control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
551
+ return control
552
+
553
+ def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
554
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
555
+ control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
556
+ control_model = controlnet_load_state_dict(control_model, sd)
557
+ extra_conds = ['y', 'guidance']
558
+ control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
559
+ return control
560
+
561
+ def load_controlnet_flux_instantx(sd, model_options={}):
562
+ new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
563
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
564
+ for k in sd:
565
+ new_sd[k] = sd[k]
566
+
567
+ num_union_modes = 0
568
+ union_cnet = "controlnet_mode_embedder.weight"
569
+ if union_cnet in new_sd:
570
+ num_union_modes = new_sd[union_cnet].shape[0]
571
+
572
+ control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
573
+ concat_mask = False
574
+ if control_latent_channels == 17:
575
+ concat_mask = True
576
+
577
+ control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
578
+ control_model = controlnet_load_state_dict(control_model, new_sd)
579
+
580
+ latent_format = comfy.latent_formats.Flux()
581
+ extra_conds = ['y', 'guidance']
582
+ control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
583
+ return control
584
+
585
+ def convert_mistoline(sd):
586
+ return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
587
+
588
+
589
+ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
590
+ controlnet_data = state_dict
591
+ if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
592
+ return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
593
+
594
+ if "lora_controlnet" in controlnet_data:
595
+ return ControlLora(controlnet_data, model_options=model_options)
596
+
597
+ controlnet_config = None
598
+ supported_inference_dtypes = None
599
+
600
+ if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
601
+ controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
602
+ diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
603
+ diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
604
+ diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
605
+
606
+ count = 0
607
+ loop = True
608
+ while loop:
609
+ suffix = [".weight", ".bias"]
610
+ for s in suffix:
611
+ k_in = "controlnet_down_blocks.{}{}".format(count, s)
612
+ k_out = "zero_convs.{}.0{}".format(count, s)
613
+ if k_in not in controlnet_data:
614
+ loop = False
615
+ break
616
+ diffusers_keys[k_in] = k_out
617
+ count += 1
618
+
619
+ count = 0
620
+ loop = True
621
+ while loop:
622
+ suffix = [".weight", ".bias"]
623
+ for s in suffix:
624
+ if count == 0:
625
+ k_in = "controlnet_cond_embedding.conv_in{}".format(s)
626
+ else:
627
+ k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
628
+ k_out = "input_hint_block.{}{}".format(count * 2, s)
629
+ if k_in not in controlnet_data:
630
+ k_in = "controlnet_cond_embedding.conv_out{}".format(s)
631
+ loop = False
632
+ diffusers_keys[k_in] = k_out
633
+ count += 1
634
+
635
+ new_sd = {}
636
+ for k in diffusers_keys:
637
+ if k in controlnet_data:
638
+ new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
639
+
640
+ if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
641
+ controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
642
+ for k in list(controlnet_data.keys()):
643
+ new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
644
+ new_sd[new_k] = controlnet_data.pop(k)
645
+
646
+ leftover_keys = controlnet_data.keys()
647
+ if len(leftover_keys) > 0:
648
+ logging.warning("leftover keys: {}".format(leftover_keys))
649
+ controlnet_data = new_sd
650
+ elif "controlnet_blocks.0.weight" in controlnet_data:
651
+ if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
652
+ return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
653
+ elif "pos_embed_input.proj.weight" in controlnet_data:
654
+ if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
655
+ return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
656
+ else:
657
+ return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
658
+ elif "controlnet_x_embedder.weight" in controlnet_data:
659
+ return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
660
+ elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
661
+ return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
662
+
663
+ pth_key = 'control_model.zero_convs.0.0.weight'
664
+ pth = False
665
+ key = 'zero_convs.0.0.weight'
666
+ if pth_key in controlnet_data:
667
+ pth = True
668
+ key = pth_key
669
+ prefix = "control_model."
670
+ elif key in controlnet_data:
671
+ prefix = ""
672
+ else:
673
+ net = load_t2i_adapter(controlnet_data, model_options=model_options)
674
+ if net is None:
675
+ logging.error("error could not detect control model type.")
676
+ return net
677
+
678
+ if controlnet_config is None:
679
+ model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
680
+ supported_inference_dtypes = list(model_config.supported_inference_dtypes)
681
+ controlnet_config = model_config.unet_config
682
+
683
+ unet_dtype = model_options.get("dtype", None)
684
+ if unet_dtype is None:
685
+ weight_dtype = comfy.utils.weight_dtype(controlnet_data)
686
+
687
+ if supported_inference_dtypes is None:
688
+ supported_inference_dtypes = [comfy.model_management.unet_dtype()]
689
+
690
+ unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype)
691
+
692
+ load_device = comfy.model_management.get_torch_device()
693
+
694
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
695
+ operations = model_options.get("custom_operations", None)
696
+ if operations is None:
697
+ operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
698
+
699
+ controlnet_config["operations"] = operations
700
+ controlnet_config["dtype"] = unet_dtype
701
+ controlnet_config["device"] = comfy.model_management.unet_offload_device()
702
+ controlnet_config.pop("out_channels")
703
+ controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
704
+ control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
705
+
706
+ if pth:
707
+ if 'difference' in controlnet_data:
708
+ if model is not None:
709
+ comfy.model_management.load_models_gpu([model])
710
+ model_sd = model.model_state_dict()
711
+ for x in controlnet_data:
712
+ c_m = "control_model."
713
+ if x.startswith(c_m):
714
+ sd_key = "diffusion_model.{}".format(x[len(c_m):])
715
+ if sd_key in model_sd:
716
+ cd = controlnet_data[x]
717
+ cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
718
+ else:
719
+ logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
720
+
721
+ class WeightsLoader(torch.nn.Module):
722
+ pass
723
+ w = WeightsLoader()
724
+ w.control_model = control_model
725
+ missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
726
+ else:
727
+ missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
728
+
729
+ if len(missing) > 0:
730
+ logging.warning("missing controlnet keys: {}".format(missing))
731
+
732
+ if len(unexpected) > 0:
733
+ logging.debug("unexpected controlnet keys: {}".format(unexpected))
734
+
735
+ global_average_pooling = model_options.get("global_average_pooling", False)
736
+ control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
737
+ return control
738
+
739
+ def load_controlnet(ckpt_path, model=None, model_options={}):
740
+ model_options = model_options.copy()
741
+ if "global_average_pooling" not in model_options:
742
+ filename = os.path.splitext(ckpt_path)[0]
743
+ if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
744
+ model_options["global_average_pooling"] = True
745
+
746
+ cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
747
+ if cnet is None:
748
+ logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
749
+ return cnet
750
+
751
+ class T2IAdapter(ControlBase):
752
+ def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
753
+ super().__init__()
754
+ self.t2i_model = t2i_model
755
+ self.channels_in = channels_in
756
+ self.control_input = None
757
+ self.compression_ratio = compression_ratio
758
+ self.upscale_algorithm = upscale_algorithm
759
+ if device is None:
760
+ device = comfy.model_management.get_torch_device()
761
+ self.device = device
762
+
763
+ def scale_image_to(self, width, height):
764
+ unshuffle_amount = self.t2i_model.unshuffle_amount
765
+ width = math.ceil(width / unshuffle_amount) * unshuffle_amount
766
+ height = math.ceil(height / unshuffle_amount) * unshuffle_amount
767
+ return width, height
768
+
769
+ def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
770
+ control_prev = None
771
+ if self.previous_controlnet is not None:
772
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
773
+
774
+ if self.timestep_range is not None:
775
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
776
+ if control_prev is not None:
777
+ return control_prev
778
+ else:
779
+ return None
780
+
781
+ if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
782
+ if self.cond_hint is not None:
783
+ del self.cond_hint
784
+ self.control_input = None
785
+ self.cond_hint = None
786
+ width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
787
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
788
+ if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
789
+ self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
790
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
791
+ self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
792
+ if self.control_input is None:
793
+ self.t2i_model.to(x_noisy.dtype)
794
+ self.t2i_model.to(self.device)
795
+ self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
796
+ self.t2i_model.cpu()
797
+
798
+ control_input = {}
799
+ for k in self.control_input:
800
+ control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
801
+
802
+ return self.control_merge(control_input, control_prev, x_noisy.dtype)
803
+
804
+ def copy(self):
805
+ c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
806
+ self.copy_to(c)
807
+ return c
808
+
809
+ def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
810
+ compression_ratio = 8
811
+ upscale_algorithm = 'nearest-exact'
812
+
813
+ if 'adapter' in t2i_data:
814
+ t2i_data = t2i_data['adapter']
815
+ if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
816
+ prefix_replace = {}
817
+ for i in range(4):
818
+ for j in range(2):
819
+ prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
820
+ prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
821
+ prefix_replace["adapter."] = ""
822
+ t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
823
+ keys = t2i_data.keys()
824
+
825
+ if "body.0.in_conv.weight" in keys:
826
+ cin = t2i_data['body.0.in_conv.weight'].shape[1]
827
+ model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
828
+ elif 'conv_in.weight' in keys:
829
+ cin = t2i_data['conv_in.weight'].shape[1]
830
+ channel = t2i_data['conv_in.weight'].shape[0]
831
+ ksize = t2i_data['body.0.block2.weight'].shape[2]
832
+ use_conv = False
833
+ down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
834
+ if len(down_opts) > 0:
835
+ use_conv = True
836
+ xl = False
837
+ if cin == 256 or cin == 768:
838
+ xl = True
839
+ model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
840
+ elif "backbone.0.0.weight" in keys:
841
+ model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
842
+ compression_ratio = 32
843
+ upscale_algorithm = 'bilinear'
844
+ elif "backbone.10.blocks.0.weight" in keys:
845
+ model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
846
+ compression_ratio = 1
847
+ upscale_algorithm = 'nearest-exact'
848
+ else:
849
+ return None
850
+
851
+ missing, unexpected = model_ad.load_state_dict(t2i_data)
852
+ if len(missing) > 0:
853
+ logging.warning("t2i missing {}".format(missing))
854
+
855
+ if len(unexpected) > 0:
856
+ logging.debug("t2i unexpected {}".format(unexpected))
857
+
858
+ return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
comfy/diffusers_convert.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import logging
4
+
5
+ # conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
6
+
7
+ # ================#
8
+ # VAE Conversion #
9
+ # ================#
10
+
11
+ vae_conversion_map = [
12
+ # (stable-diffusion, HF Diffusers)
13
+ ("nin_shortcut", "conv_shortcut"),
14
+ ("norm_out", "conv_norm_out"),
15
+ ("mid.attn_1.", "mid_block.attentions.0."),
16
+ ]
17
+
18
+ for i in range(4):
19
+ # down_blocks have two resnets
20
+ for j in range(2):
21
+ hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
22
+ sd_down_prefix = f"encoder.down.{i}.block.{j}."
23
+ vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
24
+
25
+ if i < 3:
26
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
27
+ sd_downsample_prefix = f"down.{i}.downsample."
28
+ vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
29
+
30
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
31
+ sd_upsample_prefix = f"up.{3 - i}.upsample."
32
+ vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
33
+
34
+ # up_blocks have three resnets
35
+ # also, up blocks in hf are numbered in reverse from sd
36
+ for j in range(3):
37
+ hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
38
+ sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
39
+ vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
40
+
41
+ # this part accounts for mid blocks in both the encoder and the decoder
42
+ for i in range(2):
43
+ hf_mid_res_prefix = f"mid_block.resnets.{i}."
44
+ sd_mid_res_prefix = f"mid.block_{i + 1}."
45
+ vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
46
+
47
+ vae_conversion_map_attn = [
48
+ # (stable-diffusion, HF Diffusers)
49
+ ("norm.", "group_norm."),
50
+ ("q.", "query."),
51
+ ("k.", "key."),
52
+ ("v.", "value."),
53
+ ("q.", "to_q."),
54
+ ("k.", "to_k."),
55
+ ("v.", "to_v."),
56
+ ("proj_out.", "to_out.0."),
57
+ ("proj_out.", "proj_attn."),
58
+ ]
59
+
60
+
61
+ def reshape_weight_for_sd(w, conv3d=False):
62
+ # convert HF linear weights to SD conv2d weights
63
+ if conv3d:
64
+ return w.reshape(*w.shape, 1, 1, 1)
65
+ else:
66
+ return w.reshape(*w.shape, 1, 1)
67
+
68
+
69
+ def convert_vae_state_dict(vae_state_dict):
70
+ mapping = {k: k for k in vae_state_dict.keys()}
71
+ conv3d = False
72
+ for k, v in mapping.items():
73
+ for sd_part, hf_part in vae_conversion_map:
74
+ v = v.replace(hf_part, sd_part)
75
+ if v.endswith(".conv.weight"):
76
+ if not conv3d and vae_state_dict[k].ndim == 5:
77
+ conv3d = True
78
+ mapping[k] = v
79
+ for k, v in mapping.items():
80
+ if "attentions" in k:
81
+ for sd_part, hf_part in vae_conversion_map_attn:
82
+ v = v.replace(hf_part, sd_part)
83
+ mapping[k] = v
84
+ new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
85
+ weights_to_convert = ["q", "k", "v", "proj_out"]
86
+ for k, v in new_state_dict.items():
87
+ for weight_name in weights_to_convert:
88
+ if f"mid.attn_1.{weight_name}.weight" in k:
89
+ logging.debug(f"Reshaping {k} for SD format")
90
+ new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
91
+ return new_state_dict
92
+
93
+
94
+ # =========================#
95
+ # Text Encoder Conversion #
96
+ # =========================#
97
+
98
+
99
+ textenc_conversion_lst = [
100
+ # (stable-diffusion, HF Diffusers)
101
+ ("resblocks.", "text_model.encoder.layers."),
102
+ ("ln_1", "layer_norm1"),
103
+ ("ln_2", "layer_norm2"),
104
+ (".c_fc.", ".fc1."),
105
+ (".c_proj.", ".fc2."),
106
+ (".attn", ".self_attn"),
107
+ ("ln_final.", "transformer.text_model.final_layer_norm."),
108
+ ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
109
+ ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
110
+ ]
111
+ protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
112
+ textenc_pattern = re.compile("|".join(protected.keys()))
113
+
114
+ # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
115
+ code2idx = {"q": 0, "k": 1, "v": 2}
116
+
117
+
118
+ # This function exists because at the time of writing torch.cat can't do fp8 with cuda
119
+ def cat_tensors(tensors):
120
+ x = 0
121
+ for t in tensors:
122
+ x += t.shape[0]
123
+
124
+ shape = [x] + list(tensors[0].shape)[1:]
125
+ out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
126
+
127
+ x = 0
128
+ for t in tensors:
129
+ out[x:x + t.shape[0]] = t
130
+ x += t.shape[0]
131
+
132
+ return out
133
+
134
+
135
+ def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
136
+ new_state_dict = {}
137
+ capture_qkv_weight = {}
138
+ capture_qkv_bias = {}
139
+ for k, v in text_enc_dict.items():
140
+ if not k.startswith(prefix):
141
+ continue
142
+ if (
143
+ k.endswith(".self_attn.q_proj.weight")
144
+ or k.endswith(".self_attn.k_proj.weight")
145
+ or k.endswith(".self_attn.v_proj.weight")
146
+ ):
147
+ k_pre = k[: -len(".q_proj.weight")]
148
+ k_code = k[-len("q_proj.weight")]
149
+ if k_pre not in capture_qkv_weight:
150
+ capture_qkv_weight[k_pre] = [None, None, None]
151
+ capture_qkv_weight[k_pre][code2idx[k_code]] = v
152
+ continue
153
+
154
+ if (
155
+ k.endswith(".self_attn.q_proj.bias")
156
+ or k.endswith(".self_attn.k_proj.bias")
157
+ or k.endswith(".self_attn.v_proj.bias")
158
+ ):
159
+ k_pre = k[: -len(".q_proj.bias")]
160
+ k_code = k[-len("q_proj.bias")]
161
+ if k_pre not in capture_qkv_bias:
162
+ capture_qkv_bias[k_pre] = [None, None, None]
163
+ capture_qkv_bias[k_pre][code2idx[k_code]] = v
164
+ continue
165
+
166
+ text_proj = "transformer.text_projection.weight"
167
+ if k.endswith(text_proj):
168
+ new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
169
+ else:
170
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
171
+ new_state_dict[relabelled_key] = v
172
+
173
+ for k_pre, tensors in capture_qkv_weight.items():
174
+ if None in tensors:
175
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
176
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
177
+ new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
178
+
179
+ for k_pre, tensors in capture_qkv_bias.items():
180
+ if None in tensors:
181
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
182
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
183
+ new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
184
+
185
+ return new_state_dict
186
+
187
+
188
+ def convert_text_enc_state_dict(text_enc_dict):
189
+ return text_enc_dict