Pushp123's picture
Update app.py
ddc394e verified
#1. Importing Lib
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import gradio as gr
#2. Data Preprocessing
df=pd.read_csv("mail_data.csv")
df.loc[df["Category"]=="spam","Category",]=0
df.loc[df["Category"]=="ham","Category",]=1
# Spliting Data into xand y
x=df["Message"]
y=df["Category"]
#3. Modeling Part
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
# Features extractions using TfidfVectorizer
feature_extraction=TfidfVectorizer(min_df=1,stop_words="english",lowercase=True)
x_train_features = feature_extraction.fit_transform(x_train)
x_test_features = feature_extraction.transform(x_test)
y_train = y_train.astype("int")
y_test = y_test.astype("int")
model=LogisticRegression()
# Trains the model only at Train data features
model.fit(x_train_features,y_train)
x_predict=model.predict(x_train_features)
x_accuracy=accuracy_score(x_predict,y_train)
y_predict=model.predict(x_test_features)
y_accuracy=accuracy_score(y_predict,y_test)
#4. UI For Model
# Function to predict whether the email is spam or ham
def classify_email(email_text):
# Transform the input email text using the same vectorizer used during training
input_data_features = feature_extraction.transform([email_text])
# Predict using the trained model
prediction = model.predict(input_data_features)
# Return the result based on the prediction
if prediction[0] == 0:
return "Your email is Spam"
else:
return "Your email is Ham"
# Create a Gradio interface for user input
interface = gr.Interface(
fn=classify_email, # Function to be called when user interacts
inputs=gr.Textbox(label="Enter your email text here", placeholder="Type your email...", lines=5),
outputs=gr.Textbox(label="Prediction"),
live=True # Live prediction update
)
# Launch the interface
interface.launch()