Spaces:
Sleeping
Sleeping
PushkarA07
commited on
Commit
·
e520534
1
Parent(s):
386d22a
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
|
3 |
+
from diffusers import LDMTextToImagePipeline
|
4 |
+
import gradio as gr
|
5 |
+
import PIL.Image
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
import torch
|
9 |
+
import subprocess
|
10 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2Tokenizer
|
11 |
+
from transformers import AutoModelWithLMHead, AutoModelForCausalLM, AutoTokenizer
|
12 |
+
from transformers import WhisperForConditionalGeneration, WhisperConfig, WhisperProcessor
|
13 |
+
import torchaudio
|
14 |
+
import nltk
|
15 |
+
from pydub import AudioSegment
|
16 |
+
import re
|
17 |
+
from datasets import load_dataset
|
18 |
+
from transformers import AutoModelWithLMHead, AutoTokenizer, set_seed, pipeline
|
19 |
+
import torch
|
20 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
21 |
+
import torch
|
22 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel, PNDMScheduler, DPMSolverMultistepScheduler, LMSDiscreteScheduler
|
23 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from torch import autocast
|
26 |
+
from PIL import Image
|
27 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
+
|
30 |
+
def generate_lyrics(sample):
|
31 |
+
model_name = "openai/whisper-tiny.en"
|
32 |
+
model_config = WhisperConfig.from_pretrained(model_name)
|
33 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
34 |
+
asr_model = WhisperForConditionalGeneration.from_pretrained(model_name, config=model_config)
|
35 |
+
asr_model.eval()
|
36 |
+
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
37 |
+
transcript = asr_model.generate(input_features)
|
38 |
+
predicted_ids = asr_model.generate(input_features)
|
39 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
40 |
+
lyrics = transcription[0]
|
41 |
+
return lyrics
|
42 |
+
|
43 |
+
def generate_summary(lyrics):
|
44 |
+
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
|
45 |
+
summary = summarizer(lyrics)
|
46 |
+
return summary
|
47 |
+
|
48 |
+
def generate_prompt(summary):
|
49 |
+
model_name = 'gpt2'
|
50 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
51 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
52 |
+
model = model.to(device)
|
53 |
+
prompt = f"Create an image that represents the feeling of '{summary}'"
|
54 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
55 |
+
output = model.generate(input_ids, do_sample=True, max_length=100, temperature=0.7)
|
56 |
+
prompt_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
+
return prompt_text
|
58 |
+
|
59 |
+
def generate_image(prompt,
|
60 |
+
height = 512, # default height of Stable Diffusion
|
61 |
+
width = 512 , # default width of Stable Diffusion
|
62 |
+
num_inference_steps = 50 , # Number of denoising steps
|
63 |
+
guidance_scale = 7.5 , # Scale for classifier-free guidance
|
64 |
+
generator = torch.manual_seed(32), # Seed generator to create the inital latent noise
|
65 |
+
batch_size = 1,):
|
66 |
+
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
67 |
+
pipe = pipe.to(torch_device)
|
68 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
69 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
70 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
71 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
72 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler")
|
73 |
+
vae = vae.to(torch_device)
|
74 |
+
text_encoder = text_encoder.to(torch_device)
|
75 |
+
unet = unet.to(torch_device)
|
76 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
77 |
+
with torch.no_grad():
|
78 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
79 |
+
max_length = text_input.input_ids.shape[-1]
|
80 |
+
uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt")
|
81 |
+
with torch.no_grad():
|
82 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
83 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
84 |
+
latents = torch.randn((batch_size, unet.in_channels, height // 8, width // 8), generator=generator,)
|
85 |
+
latents = latents.to(torch_device)
|
86 |
+
scheduler.set_timesteps(num_inference_steps)
|
87 |
+
latents = latents * scheduler.init_noise_sigma
|
88 |
+
for t in tqdm(scheduler.timesteps):
|
89 |
+
latent_model_input = torch.cat([latents] * 2)
|
90 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
91 |
+
with torch.no_grad():
|
92 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
93 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
94 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
95 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
96 |
+
latents = 1 / 0.18215 * latents
|
97 |
+
with torch.no_grad():
|
98 |
+
image = vae.decode(latents).sample
|
99 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
100 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
101 |
+
images = (image * 255).round().astype("uint8")
|
102 |
+
pil_images = [Image.fromarray(image) for image in images]
|
103 |
+
f_images = pil_images
|
104 |
+
return f_images
|
105 |
+
|
106 |
+
def predict(audio, steps=100, seed=42, guidance_scale=6.0):
|
107 |
+
generator = torch.manual_seed(seed)
|
108 |
+
lyrics = generate_lyrics(audio)
|
109 |
+
summary_1 = generate_summary(lyrics)
|
110 |
+
prompt_text_1 = generate_prompt(summary_1[0]['summary_text'])
|
111 |
+
images = generate_image(prompt= prompt_text_1, generator= generator, num_inference_steps=steps, guidance_scale=guidance_scale)
|
112 |
+
return images[0]
|
113 |
+
|
114 |
+
random_seed = random.randint(0, 2147483647)
|
115 |
+
gr.Interface(
|
116 |
+
predict,
|
117 |
+
inputs=[
|
118 |
+
gr.Audio(source="upload", type="filepath"),
|
119 |
+
# gr.inputs.Textbox(label='Text', default='a chalk pastel drawing of a llama wearing a wizard hat'),
|
120 |
+
gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
|
121 |
+
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
|
122 |
+
gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
|
123 |
+
],
|
124 |
+
examples=[[load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")][0]["audio"]],
|
125 |
+
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
|
126 |
+
css="#output_image{width: 256px}",
|
127 |
+
title="Cover Generator (audio-to-image)",
|
128 |
+
description="Application of OpenAI tools such as Whisper, ChatGPT, and DALL-E to produce covers for the given audio",
|
129 |
+
).launch()
|