Spaces:
Runtime error
Runtime error
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import pdb | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.modeling_utils import ModelMixin | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from .unet_2d_blocks import ( | |
| CrossAttnDownBlock2D, | |
| CrossAttnUpBlock2D, | |
| DownBlock2D, | |
| UNetMidBlock2DCrossAttn, | |
| UpBlock2D, | |
| get_down_block, | |
| get_up_block, | |
| ) | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class UNet2DConditionOutput(BaseOutput): | |
| """ | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
| """ | |
| sample: torch.FloatTensor | |
| class UNet2DConditionModel(ModelMixin, ConfigMixin): | |
| r""" | |
| UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep | |
| and returns sample shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
| implements for all the models (such as downloading or saving, etc.) | |
| Parameters: | |
| sample_size (`int`, *optional*): The size of the input sample. | |
| in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
| center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
| flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
| The tuple of upsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
| norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
| cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
| attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| center_input_sample: bool = False, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ), | |
| up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: int = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| attention_head_dim: int = 8, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # input | |
| self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
| # time | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim, | |
| downsample_padding=downsample_padding, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlock2DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift="default", | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim, | |
| resnet_groups=norm_num_groups, | |
| ) | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=layers_per_block + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
| def set_attention_slice(self, slice_size): | |
| if slice_size is not None and self.config.attention_head_dim % slice_size != 0: | |
| raise ValueError( | |
| f"Make sure slice_size {slice_size} is a divisor of " | |
| f"the number of heads used in cross_attention {self.config.attention_head_dim}" | |
| ) | |
| if slice_size is not None and slice_size > self.config.attention_head_dim: | |
| raise ValueError( | |
| f"Chunk_size {slice_size} has to be smaller or equal to " | |
| f"the number of heads used in cross_attention {self.config.attention_head_dim}" | |
| ) | |
| for block in self.down_blocks: | |
| if hasattr(block, "attentions") and block.attentions is not None: | |
| block.set_attention_slice(slice_size) | |
| self.mid_block.set_attention_slice(slice_size) | |
| for block in self.up_blocks: | |
| if hasattr(block, "attentions") and block.attentions is not None: | |
| block.set_attention_slice(slice_size) | |
| def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
| for block in self.down_blocks: | |
| if hasattr(block, "attentions") and block.attentions is not None: | |
| block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers) | |
| self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers) | |
| for block in self.up_blocks: | |
| if hasattr(block, "attentions") and block.attentions is not None: | |
| block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| return_dict: bool = True, | |
| ) -> Union[UNet2DConditionOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs_coarse tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
| returning a tuple, the first element is the sample tensor. | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) | |
| elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| attn_down = [] | |
| down_block_res_samples = (sample,) | |
| for block_idx, downsample_block in enumerate(self.down_blocks): | |
| if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: | |
| sample, res_samples, cross_atten_prob = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states | |
| ) | |
| attn_down.append(cross_atten_prob) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| sample, attn_mid = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) | |
| # 5. up | |
| attn_up = [] | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: | |
| sample, cross_atten_prob = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| ) | |
| attn_up.append(cross_atten_prob) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return UNet2DConditionOutput(sample=sample), attn_up, attn_mid, attn_down | |