PuruAI commited on
Commit
ecf9f11
·
verified ·
1 Parent(s): dfc5d23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -17
app.py CHANGED
@@ -1,34 +1,29 @@
1
  import os
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
 
4
  # Model configuration
5
- MODEL_ID = "PuruAI/Medini_Intelligence"
6
  FALLBACK_MODEL = "gpt2"
7
 
8
- # Get Hugging Face token from secret/environment variable
9
- HF_TOKEN = os.environ.get("HUGGINGFACE_HUB_TOKEN")
10
-
11
- if not HF_TOKEN:
12
- raise ValueError("HUGGINGFACE_HUB_TOKEN is not set. Please set it as a secret/environment variable.")
13
 
14
  def load_model(model_id):
15
- """
16
- Try to load the specified model. If it fails, fall back to GPT-2.
17
- """
18
  try:
19
  print(f"Loading model: {model_id}")
20
- tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
21
- model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN)
22
  return pipeline("text-generation", model=model, tokenizer=tokenizer)
23
  except Exception as e:
24
  print(f"❌ Failed to load {model_id}: {e}")
25
  print(f"⏩ Falling back to {FALLBACK_MODEL}")
26
- return pipeline("text-generation", model=FALLBACK_MODEL, token=HF_TOKEN)
27
 
28
- # Initialize the generator
29
  generator = load_model(MODEL_ID)
30
 
31
- # Example usage
32
  prompt = "Once upon a time"
33
- result = generator(prompt, max_length=50, do_sample=True)
34
- print(result)
 
1
  import os
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
3
 
4
  # Model configuration
5
+ MODEL_ID = "PuruAI/Medini_Intelligence" # Your private model
6
  FALLBACK_MODEL = "gpt2"
7
 
8
+ # Load Hugging Face token from secret
9
+ HF_TOKEN = os.environ.get("HF_TOKEN")
 
 
 
10
 
11
  def load_model(model_id):
12
+ """Load private model if possible, otherwise fallback to GPT-2."""
 
 
13
  try:
14
  print(f"Loading model: {model_id}")
15
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
16
+ model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=HF_TOKEN)
17
  return pipeline("text-generation", model=model, tokenizer=tokenizer)
18
  except Exception as e:
19
  print(f"❌ Failed to load {model_id}: {e}")
20
  print(f"⏩ Falling back to {FALLBACK_MODEL}")
21
+ return pipeline("text-generation", model=FALLBACK_MODEL)
22
 
23
+ # Initialize pipeline
24
  generator = load_model(MODEL_ID)
25
 
26
+ # Test generation
27
  prompt = "Once upon a time"
28
+ output = generator(prompt, max_new_tokens=50)
29
+ print(output)