Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,47 @@
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
from sentence_transformers import SentenceTransformer
|
| 3 |
-
import os
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
try:
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
except Exception as e:
|
| 11 |
-
print(f"Failed to load
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
MODEL_ID = "PuruAI/Medini_Intelligence"
|
| 15 |
-
FALLBACK_MODEL = "gpt2"
|
| 16 |
try:
|
| 17 |
-
|
|
|
|
| 18 |
except Exception as e:
|
| 19 |
-
print(f"Failed to load
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
from transformers import pipeline
|
| 3 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 4 |
|
| 5 |
+
# Models
|
| 6 |
+
MAIN_MODEL = "PuruAI/Medini_Intelligence"
|
| 7 |
+
FALLBACK_MODEL = "gpt2"
|
| 8 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 9 |
|
| 10 |
+
# Check if token is set
|
| 11 |
+
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 12 |
+
if not HF_TOKEN:
|
| 13 |
+
print("⚠️ Warning: HUGGINGFACE_HUB_TOKEN not set. Private models may fail to load.")
|
| 14 |
+
|
| 15 |
+
# --- Load text generation model ---
|
| 16 |
try:
|
| 17 |
+
generator = pipeline(
|
| 18 |
+
"text-generation",
|
| 19 |
+
model=MAIN_MODEL
|
| 20 |
+
)
|
| 21 |
+
print(f"✅ Loaded main model: {MAIN_MODEL}")
|
| 22 |
except Exception as e:
|
| 23 |
+
print(f"❌ Failed to load main model: {e}")
|
| 24 |
+
print(f"⏩ Falling back to {FALLBACK_MODEL}")
|
| 25 |
+
generator = pipeline("text-generation", model=FALLBACK_MODEL)
|
| 26 |
+
print(f"✅ Loaded fallback model: {FALLBACK_MODEL}")
|
| 27 |
|
| 28 |
+
# --- Load embedding model ---
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
+
embedder = SentenceTransformer(EMBEDDING_MODEL)
|
| 31 |
+
print(f"✅ Loaded embedding model: {EMBEDDING_MODEL}")
|
| 32 |
except Exception as e:
|
| 33 |
+
print(f"❌ Failed to load embedding model: {e}")
|
| 34 |
+
embedder = None # Safe fallback
|
| 35 |
+
|
| 36 |
+
# --- Example usage ---
|
| 37 |
+
prompt = "Once upon a time"
|
| 38 |
+
output = generator(prompt, max_length=50)
|
| 39 |
+
print("\n--- Generated Text ---")
|
| 40 |
+
print(output[0]['generated_text'])
|
| 41 |
+
|
| 42 |
+
if embedder:
|
| 43 |
+
sentences = ["Hello world", "How are you?"]
|
| 44 |
+
embeddings = embedder.encode(sentences)
|
| 45 |
+
print("\n--- Embeddings ---")
|
| 46 |
+
for s, emb in zip(sentences, embeddings):
|
| 47 |
+
print(f"{s}: {emb[:5]}...") # print first 5 values for brevity
|