Upload 5 files
Browse files- .env.example +2 -0
- README.md +37 -0
- app.py +50 -0
- requirements.txt +5 -0
- start.sh +7 -0
.env.example
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Optional environment variables for Medini Space
|
| 2 |
+
# HF_TOKEN=your_huggingface_token_here
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Medini AI Space
|
| 3 |
+
emoji: 🤖
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "3.39.0"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Medini AI Space
|
| 13 |
+
|
| 14 |
+
## Overview
|
| 15 |
+
Medini AI is a generative AI application built on Hugging Face Spaces. It uses a text generation model (`PuruAI/Medini_Intelligence`) and a sentence embedding model (`all-MiniLM-L6-v2`) to provide AI-generated responses to user prompts.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
- Interactive Gradio interface.
|
| 19 |
+
- Public embedding model, no authentication token required.
|
| 20 |
+
- Fallback to GPT-2 if main model fails.
|
| 21 |
+
- Logging for debugging and monitoring.
|
| 22 |
+
|
| 23 |
+
## How to Run
|
| 24 |
+
1. Ensure all dependencies are installed:
|
| 25 |
+
```bash
|
| 26 |
+
pip install -r requirements.txt
|
| 27 |
+
```
|
| 28 |
+
2. Launch the app:
|
| 29 |
+
```bash
|
| 30 |
+
python app.py
|
| 31 |
+
```
|
| 32 |
+
3. Open the URL provided by Gradio to interact with the AI.
|
| 33 |
+
|
| 34 |
+
## Notes
|
| 35 |
+
- No Hugging Face token is required for public model access.
|
| 36 |
+
- Handles model load failures gracefully.
|
| 37 |
+
- Recommended to deploy on Hugging Face Spaces for easy hosting.
|
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
# Logging setup
|
| 7 |
+
logging.basicConfig(level=logging.INFO)
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
# Model configuration
|
| 11 |
+
MODEL_ID = "PuruAI/Medini_Intelligence"
|
| 12 |
+
FALLBACK_MODEL = "gpt2"
|
| 13 |
+
EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 14 |
+
|
| 15 |
+
# Load embedding model
|
| 16 |
+
try:
|
| 17 |
+
logger.info(f"Loading embedding model: {EMB_MODEL}")
|
| 18 |
+
embedding_model = SentenceTransformer(EMB_MODEL)
|
| 19 |
+
logger.info("Embedding model loaded successfully.")
|
| 20 |
+
except Exception as e:
|
| 21 |
+
logger.error(f"Failed to load embedding model: {e}")
|
| 22 |
+
embedding_model = None
|
| 23 |
+
|
| 24 |
+
# Load main LLM
|
| 25 |
+
try:
|
| 26 |
+
logger.info(f"Loading main model: {MODEL_ID}")
|
| 27 |
+
generator = pipeline("text-generation", model=MODEL_ID)
|
| 28 |
+
logger.info("Main model loaded successfully.")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
logger.warning(f"Failed to load {MODEL_ID}, falling back to {FALLBACK_MODEL}: {e}")
|
| 31 |
+
generator = pipeline("text-generation", model=FALLBACK_MODEL)
|
| 32 |
+
|
| 33 |
+
# Gradio interface
|
| 34 |
+
def generate_text(prompt):
|
| 35 |
+
try:
|
| 36 |
+
result = generator(prompt, max_length=200)
|
| 37 |
+
return result[0]["generated_text"]
|
| 38 |
+
except Exception as e:
|
| 39 |
+
logger.error(f"Text generation failed: {e}")
|
| 40 |
+
return "Error generating text."
|
| 41 |
+
|
| 42 |
+
with gr.Blocks() as demo:
|
| 43 |
+
gr.Markdown("## Medini AI Space")
|
| 44 |
+
user_input = gr.Textbox(label="Enter your prompt")
|
| 45 |
+
output = gr.Textbox(label="Generated Text")
|
| 46 |
+
submit = gr.Button("Generate")
|
| 47 |
+
submit.click(generate_text, inputs=user_input, outputs=output)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.39.0
|
| 2 |
+
transformers==4.42.2
|
| 3 |
+
sentence-transformers>=2.2.2,<3
|
| 4 |
+
torch>=2.0.0
|
| 5 |
+
huggingface_hub>=0.14.1
|
start.sh
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Force reinstall dependencies to ensure correct versions
|
| 4 |
+
pip install --upgrade --force-reinstall -r requirements.txt
|
| 5 |
+
|
| 6 |
+
# Launch the app
|
| 7 |
+
python app.py
|