Purple11's picture
Update app.py
c68eb58
import gradio as gr
import argparse, os
import cv2
import torch
import numpy as np
import torchvision
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.diffusionmodules.openaimodel import clear_feature_dic,get_feature_dic
from ldm.models.seg_module import Segmodule
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.to(device)
model.eval()
return model
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, 'dwtDct')
img = Image.fromarray(img[:, :, ::-1])
return img
def load_replacement(x):
try:
hwc = x.shape
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
y = (np.array(y)/255.0).astype(x.dtype)
assert y.shape == x.shape
return y
except Exception:
return x
def plot_mask(img, masks, colors=None, alpha=0.8,indexlist=[0,1]) -> np.ndarray:
"""Visualize segmentation mask.
Parameters
----------
img: numpy.ndarray
Image with shape `(H, W, 3)`.
masks: numpy.ndarray
Binary images with shape `(N, H, W)`.
colors: numpy.ndarray
corlor for mask, shape `(N, 3)`.
if None, generate random color for mask
alpha: float, optional, default 0.5
Transparency of plotted mask
Returns
-------
numpy.ndarray
The image plotted with segmentation masks, shape `(H, W, 3)`
"""
H,W= masks.shape[0],masks.shape[1]
color_list=[[255,97,0],[128,42,42],[220,220,220],[255,153,18],[56,94,15],[127,255,212],[210,180,140],[221,160,221],[255,0,0],[255,128,0],[255,255,0],[128,255,0],[0,255,0],[0,255,128],[0,255,255],[0,128,255],[0,0,255],[128,0,255],[255,0,255],[255,0,128]]*6
final_color_list=[np.array([[i]*512]*512) for i in color_list]
background=np.ones(img.shape)*255
count=0
colors=final_color_list[indexlist[count]]
for mask, color in zip(masks, colors):
color=final_color_list[indexlist[count]]
mask = np.stack([mask, mask, mask], -1)
img = np.where(mask, img * (1 - alpha) + color * alpha,background*0.4+img*0.6 )
count+=1
return img.astype(np.uint8)
def create_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a photo of a lion on a mountain top at sunset",
help="the prompt to render"
)
parser.add_argument(
"--category",
type=str,
nargs="?",
default="lion",
help="the category to ground"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--laion400m",
action='store_true',
help="uses the LAION400M model",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--sd_ckpt",
type=str,
default="stable_diffusion.ckpt",
help="path to checkpoint of stable diffusion model",
)
parser.add_argument(
"--grounding_ckpt",
type=str,
default="grounding_module.pth",
help="path to checkpoint of grounding module",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
return opt
def main():
opt = create_parser()
print(opt)
seed_everything(opt.seed)
tic = time.time()
config = OmegaConf.load(f"{opt.config}")
print(config)
model = load_model_from_config(config, f"{opt.sd_ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
model.eval()
toc = time.time()
seg_module=Segmodule().to(device)
seg_module.load_state_dict(torch.load(opt.grounding_ckpt, map_location="cpu"), strict=True)
print('load time:',toc-tic)
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
batch_size = opt.n_samples
precision_scope = autocast if opt.precision=="autocast" else nullcontext
def inference(input_prompt, input_category):
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
prompt = input_prompt
text = input_category
trainclass = text
print(type(prompt))
print(text)
if not opt.from_file:
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
print(data)
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
start_code = None
if opt.fixed_code:
print('start_code')
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
clear_feature_dic()
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
print('c:',c)
print('uc:',uc)
print(start_code)
samples_ddim,_, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
diffusion_features = get_feature_dic()
x_sample = torch.clamp((x_samples_ddim[0] + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = x_sample.astype(np.uint8)
print("img:",img)
class_name = trainclass
query_text ="a photograph of a "+class_name
c_split = model.cond_stage_model.tokenizer.tokenize(query_text)
sen_text_embedding = model.get_learned_conditioning(query_text)
class_embedding = sen_text_embedding[:, 5:len(c_split)+1, :]
if class_embedding.size()[1] > 1:
class_embedding = torch.unsqueeze(class_embedding.mean(1), 1)
text_embedding = class_embedding
text_embedding = text_embedding.repeat(batch_size, 1, 1)
print('diffusion_features:', len(diffusion_features))
print('text_embedding:', text_embedding.shape)
pred_seg_total = seg_module(diffusion_features, text_embedding)
pred_seg = torch.unsqueeze(pred_seg_total[0,0,:,:], 0).unsqueeze(0)
label_pred_prob = torch.sigmoid(pred_seg)
label_pred_mask = torch.zeros_like(label_pred_prob, dtype=torch.float32)
label_pred_mask[label_pred_prob > 0.5] = 1
annotation_pred = label_pred_mask[0][0].cpu()
mask = annotation_pred.numpy()
mask = np.expand_dims(mask, 0)
done_image_mask = plot_mask(img, mask, alpha=0.9, indexlist=[0])
print("done_image_mask:", type(done_image_mask))
generated_image = img
generated_mask = done_image_mask
print('done')
return [generated_image, generated_mask]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
Guiding Text-to-Image Diffusion Model Towards Grounded Generation
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/Purple11/Grounded-Diffusion?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
with gr.Row():
with gr.Column(scale=3):
Prompt = gr.Textbox(lines=1, label="Prompt", interactive=True)
with gr.Column(scale=2):
Category = gr.Textbox(lines=1, label="Category", interactive=True)
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Row():
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_mask = gr.Image(label=f"Generated Mask", type="pil", interactive=False)
generated_image.style(height=512, width=512)
generated_mask.style(height=512, width=512)
generate_button.click(
fn=inference,
inputs=[
Prompt,
Category,
],
outputs=[generated_image, generated_mask],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main()