Spaces:
Sleeping
Sleeping
#SBATCH -p gpu | |
#SBATCH --mem=32g | |
#SBATCH --gres=gpu:rtx2080:1 | |
#SBATCH -c 2 | |
#SBATCH --output=example_2.out | |
source activate mlfold | |
#new_probabilities_using_PSSM = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered | |
#probs - predictions from MPNN | |
#pssm_bias_gathered - input PSSM bias (needs to be a probability distribution) | |
#pssm_multi - a number between 0.0 (no bias) and 1.0 (no MPNN) inputed via flag --pssm_multi; this is a global number equally applied to all the residues | |
#pssm_coef_gathered - a number between 0.0 (no bias) and 1.0 (no MPNN) inputed via ../helper_scripts/make_pssm_input_dict.py can be adjusted per residue level; i.e only apply PSSM bias to specific residues; or chains | |
pssm_input_path="../inputs/PSSM_inputs" | |
folder_with_pdbs="../inputs/PDB_complexes/pdbs/" | |
output_dir="../outputs/example_pssm_outputs" | |
if [ ! -d $output_dir ] | |
then | |
mkdir -p $output_dir | |
fi | |
path_for_parsed_chains=$output_dir"/parsed_pdbs.jsonl" | |
path_for_assigned_chains=$output_dir"/assigned_pdbs.jsonl" | |
pssm=$output_dir"/pssm.jsonl" | |
chains_to_design="A B" | |
python ../helper_scripts/parse_multiple_chains.py --input_path=$folder_with_pdbs --output_path=$path_for_parsed_chains | |
python ../helper_scripts/assign_fixed_chains.py --input_path=$path_for_parsed_chains --output_path=$path_for_assigned_chains --chain_list "$chains_to_design" | |
python ../helper_scripts/make_pssm_input_dict.py --jsonl_input_path=$path_for_parsed_chains --PSSM_input_path=$pssm_input_path --output_path=$pssm | |
python ../protein_mpnn_run.py \ | |
--jsonl_path $path_for_parsed_chains \ | |
--chain_id_jsonl $path_for_assigned_chains \ | |
--out_folder $output_dir \ | |
--num_seq_per_target 2 \ | |
--sampling_temp "0.1" \ | |
--seed 37 \ | |
--batch_size 1 \ | |
--pssm_jsonl $pssm \ | |
--pssm_multi 0.3 \ | |
--pssm_bias_flag 1 | |