Spaces:
Sleeping
Sleeping
from __future__ import print_function | |
import json, time, os, sys, glob | |
import shutil | |
import numpy as np | |
import torch | |
from torch import optim | |
from torch.utils.data import DataLoader | |
from torch.utils.data.dataset import random_split, Subset | |
import torch.utils | |
import torch.utils.checkpoint | |
import copy | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import random | |
import itertools | |
def featurize(batch, device): | |
alphabet = 'ACDEFGHIKLMNPQRSTVWYX' | |
B = len(batch) | |
lengths = np.array([len(b['seq']) for b in batch], dtype=np.int32) #sum of chain seq lengths | |
L_max = max([len(b['seq']) for b in batch]) | |
X = np.zeros([B, L_max, 4, 3]) | |
residue_idx = -100*np.ones([B, L_max], dtype=np.int32) #residue idx with jumps across chains | |
chain_M = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted, 0.0 for the bits that are given | |
mask_self = np.ones([B, L_max, L_max], dtype=np.int32) #for interface loss calculation - 0.0 for self interaction, 1.0 for other | |
chain_encoding_all = np.zeros([B, L_max], dtype=np.int32) #integer encoding for chains 0, 0, 0,...0, 1, 1,..., 1, 2, 2, 2... | |
S = np.zeros([B, L_max], dtype=np.int32) #sequence AAs integers | |
init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z'] | |
extra_alphabet = [str(item) for item in list(np.arange(300))] | |
chain_letters = init_alphabet + extra_alphabet | |
for i, b in enumerate(batch): | |
masked_chains = b['masked_list'] | |
visible_chains = b['visible_list'] | |
all_chains = masked_chains + visible_chains | |
visible_temp_dict = {} | |
masked_temp_dict = {} | |
for step, letter in enumerate(all_chains): | |
chain_seq = b[f'seq_chain_{letter}'] | |
if letter in visible_chains: | |
visible_temp_dict[letter] = chain_seq | |
elif letter in masked_chains: | |
masked_temp_dict[letter] = chain_seq | |
for km, vm in masked_temp_dict.items(): | |
for kv, vv in visible_temp_dict.items(): | |
if vm == vv: | |
if kv not in masked_chains: | |
masked_chains.append(kv) | |
if kv in visible_chains: | |
visible_chains.remove(kv) | |
all_chains = masked_chains + visible_chains | |
random.shuffle(all_chains) #randomly shuffle chain order | |
num_chains = b['num_of_chains'] | |
mask_dict = {} | |
x_chain_list = [] | |
chain_mask_list = [] | |
chain_seq_list = [] | |
chain_encoding_list = [] | |
c = 1 | |
l0 = 0 | |
l1 = 0 | |
for step, letter in enumerate(all_chains): | |
if letter in visible_chains: | |
chain_seq = b[f'seq_chain_{letter}'] | |
chain_length = len(chain_seq) | |
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary | |
chain_mask = np.zeros(chain_length) #0.0 for visible chains | |
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_length,4,3] | |
x_chain_list.append(x_chain) | |
chain_mask_list.append(chain_mask) | |
chain_seq_list.append(chain_seq) | |
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0])) | |
l1 += chain_length | |
mask_self[i, l0:l1, l0:l1] = np.zeros([chain_length, chain_length]) | |
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1) | |
l0 += chain_length | |
c+=1 | |
elif letter in masked_chains: | |
chain_seq = b[f'seq_chain_{letter}'] | |
chain_length = len(chain_seq) | |
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary | |
chain_mask = np.ones(chain_length) #0.0 for visible chains | |
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3] | |
x_chain_list.append(x_chain) | |
chain_mask_list.append(chain_mask) | |
chain_seq_list.append(chain_seq) | |
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0])) | |
l1 += chain_length | |
mask_self[i, l0:l1, l0:l1] = np.zeros([chain_length, chain_length]) | |
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1) | |
l0 += chain_length | |
c+=1 | |
x = np.concatenate(x_chain_list,0) #[L, 4, 3] | |
all_sequence = "".join(chain_seq_list) | |
m = np.concatenate(chain_mask_list,0) #[L,], 1.0 for places that need to be predicted | |
chain_encoding = np.concatenate(chain_encoding_list,0) | |
l = len(all_sequence) | |
x_pad = np.pad(x, [[0,L_max-l], [0,0], [0,0]], 'constant', constant_values=(np.nan, )) | |
X[i,:,:,:] = x_pad | |
m_pad = np.pad(m, [[0,L_max-l]], 'constant', constant_values=(0.0, )) | |
chain_M[i,:] = m_pad | |
chain_encoding_pad = np.pad(chain_encoding, [[0,L_max-l]], 'constant', constant_values=(0.0, )) | |
chain_encoding_all[i,:] = chain_encoding_pad | |
# Convert to labels | |
indices = np.asarray([alphabet.index(a) for a in all_sequence], dtype=np.int32) | |
S[i, :l] = indices | |
isnan = np.isnan(X) | |
mask = np.isfinite(np.sum(X,(2,3))).astype(np.float32) | |
X[isnan] = 0. | |
# Conversion | |
residue_idx = torch.from_numpy(residue_idx).to(dtype=torch.long,device=device) | |
S = torch.from_numpy(S).to(dtype=torch.long,device=device) | |
X = torch.from_numpy(X).to(dtype=torch.float32, device=device) | |
mask = torch.from_numpy(mask).to(dtype=torch.float32, device=device) | |
mask_self = torch.from_numpy(mask_self).to(dtype=torch.float32, device=device) | |
chain_M = torch.from_numpy(chain_M).to(dtype=torch.float32, device=device) | |
chain_encoding_all = torch.from_numpy(chain_encoding_all).to(dtype=torch.long, device=device) | |
return X, S, mask, lengths, chain_M, residue_idx, mask_self, chain_encoding_all | |
def loss_nll(S, log_probs, mask): | |
""" Negative log probabilities """ | |
criterion = torch.nn.NLLLoss(reduction='none') | |
loss = criterion( | |
log_probs.contiguous().view(-1, log_probs.size(-1)), S.contiguous().view(-1) | |
).view(S.size()) | |
S_argmaxed = torch.argmax(log_probs,-1) #[B, L] | |
true_false = (S == S_argmaxed).float() | |
loss_av = torch.sum(loss * mask) / torch.sum(mask) | |
return loss, loss_av, true_false | |
def loss_smoothed(S, log_probs, mask, weight=0.1): | |
""" Negative log probabilities """ | |
S_onehot = torch.nn.functional.one_hot(S, 21).float() | |
# Label smoothing | |
S_onehot = S_onehot + weight / float(S_onehot.size(-1)) | |
S_onehot = S_onehot / S_onehot.sum(-1, keepdim=True) | |
loss = -(S_onehot * log_probs).sum(-1) | |
loss_av = torch.sum(loss * mask) / 2000.0 #fixed | |
return loss, loss_av | |
# The following gather functions | |
def gather_edges(edges, neighbor_idx): | |
# Features [B,N,N,C] at Neighbor indices [B,N,K] => Neighbor features [B,N,K,C] | |
neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1)) | |
edge_features = torch.gather(edges, 2, neighbors) | |
return edge_features | |
def gather_nodes(nodes, neighbor_idx): | |
# Features [B,N,C] at Neighbor indices [B,N,K] => [B,N,K,C] | |
# Flatten and expand indices per batch [B,N,K] => [B,NK] => [B,NK,C] | |
neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1)) | |
neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2)) | |
# Gather and re-pack | |
neighbor_features = torch.gather(nodes, 1, neighbors_flat) | |
neighbor_features = neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1]) | |
return neighbor_features | |
def gather_nodes_t(nodes, neighbor_idx): | |
# Features [B,N,C] at Neighbor index [B,K] => Neighbor features[B,K,C] | |
idx_flat = neighbor_idx.unsqueeze(-1).expand(-1, -1, nodes.size(2)) | |
neighbor_features = torch.gather(nodes, 1, idx_flat) | |
return neighbor_features | |
def cat_neighbors_nodes(h_nodes, h_neighbors, E_idx): | |
h_nodes = gather_nodes(h_nodes, E_idx) | |
h_nn = torch.cat([h_neighbors, h_nodes], -1) | |
return h_nn | |
class EncLayer(nn.Module): | |
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30): | |
super(EncLayer, self).__init__() | |
self.num_hidden = num_hidden | |
self.num_in = num_in | |
self.scale = scale | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.norm1 = nn.LayerNorm(num_hidden) | |
self.norm2 = nn.LayerNorm(num_hidden) | |
self.norm3 = nn.LayerNorm(num_hidden) | |
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True) | |
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True) | |
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True) | |
self.W11 = nn.Linear(num_hidden + num_in, num_hidden, bias=True) | |
self.W12 = nn.Linear(num_hidden, num_hidden, bias=True) | |
self.W13 = nn.Linear(num_hidden, num_hidden, bias=True) | |
self.act = torch.nn.GELU() | |
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4) | |
def forward(self, h_V, h_E, E_idx, mask_V=None, mask_attend=None): | |
""" Parallel computation of full transformer layer """ | |
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx) | |
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1) | |
h_EV = torch.cat([h_V_expand, h_EV], -1) | |
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV))))) | |
if mask_attend is not None: | |
h_message = mask_attend.unsqueeze(-1) * h_message | |
dh = torch.sum(h_message, -2) / self.scale | |
h_V = self.norm1(h_V + self.dropout1(dh)) | |
dh = self.dense(h_V) | |
h_V = self.norm2(h_V + self.dropout2(dh)) | |
if mask_V is not None: | |
mask_V = mask_V.unsqueeze(-1) | |
h_V = mask_V * h_V | |
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx) | |
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1) | |
h_EV = torch.cat([h_V_expand, h_EV], -1) | |
h_message = self.W13(self.act(self.W12(self.act(self.W11(h_EV))))) | |
h_E = self.norm3(h_E + self.dropout3(h_message)) | |
return h_V, h_E | |
class DecLayer(nn.Module): | |
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30): | |
super(DecLayer, self).__init__() | |
self.num_hidden = num_hidden | |
self.num_in = num_in | |
self.scale = scale | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.norm1 = nn.LayerNorm(num_hidden) | |
self.norm2 = nn.LayerNorm(num_hidden) | |
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True) | |
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True) | |
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True) | |
self.act = torch.nn.GELU() | |
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4) | |
def forward(self, h_V, h_E, mask_V=None, mask_attend=None): | |
""" Parallel computation of full transformer layer """ | |
# Concatenate h_V_i to h_E_ij | |
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_E.size(-2),-1) | |
h_EV = torch.cat([h_V_expand, h_E], -1) | |
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV))))) | |
if mask_attend is not None: | |
h_message = mask_attend.unsqueeze(-1) * h_message | |
dh = torch.sum(h_message, -2) / self.scale | |
h_V = self.norm1(h_V + self.dropout1(dh)) | |
# Position-wise feedforward | |
dh = self.dense(h_V) | |
h_V = self.norm2(h_V + self.dropout2(dh)) | |
if mask_V is not None: | |
mask_V = mask_V.unsqueeze(-1) | |
h_V = mask_V * h_V | |
return h_V | |
class PositionWiseFeedForward(nn.Module): | |
def __init__(self, num_hidden, num_ff): | |
super(PositionWiseFeedForward, self).__init__() | |
self.W_in = nn.Linear(num_hidden, num_ff, bias=True) | |
self.W_out = nn.Linear(num_ff, num_hidden, bias=True) | |
self.act = torch.nn.GELU() | |
def forward(self, h_V): | |
h = self.act(self.W_in(h_V)) | |
h = self.W_out(h) | |
return h | |
class PositionalEncodings(nn.Module): | |
def __init__(self, num_embeddings, max_relative_feature=32): | |
super(PositionalEncodings, self).__init__() | |
self.num_embeddings = num_embeddings | |
self.max_relative_feature = max_relative_feature | |
self.linear = nn.Linear(2*max_relative_feature+1+1, num_embeddings) | |
def forward(self, offset, mask): | |
d = torch.clip(offset + self.max_relative_feature, 0, 2*self.max_relative_feature)*mask + (1-mask)*(2*self.max_relative_feature+1) | |
d_onehot = torch.nn.functional.one_hot(d, 2*self.max_relative_feature+1+1) | |
E = self.linear(d_onehot.float()) | |
return E | |
class ProteinFeatures(nn.Module): | |
def __init__(self, edge_features, node_features, num_positional_embeddings=16, | |
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16): | |
""" Extract protein features """ | |
super(ProteinFeatures, self).__init__() | |
self.edge_features = edge_features | |
self.node_features = node_features | |
self.top_k = top_k | |
self.augment_eps = augment_eps | |
self.num_rbf = num_rbf | |
self.num_positional_embeddings = num_positional_embeddings | |
self.embeddings = PositionalEncodings(num_positional_embeddings) | |
node_in, edge_in = 6, num_positional_embeddings + num_rbf*25 | |
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False) | |
self.norm_edges = nn.LayerNorm(edge_features) | |
def _dist(self, X, mask, eps=1E-6): | |
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2) | |
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2) | |
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps) | |
D_max, _ = torch.max(D, -1, keepdim=True) | |
D_adjust = D + (1. - mask_2D) * D_max | |
sampled_top_k = self.top_k | |
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False) | |
return D_neighbors, E_idx | |
def _rbf(self, D): | |
device = D.device | |
D_min, D_max, D_count = 2., 22., self.num_rbf | |
D_mu = torch.linspace(D_min, D_max, D_count, device=device) | |
D_mu = D_mu.view([1,1,1,-1]) | |
D_sigma = (D_max - D_min) / D_count | |
D_expand = torch.unsqueeze(D, -1) | |
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2) | |
return RBF | |
def _get_rbf(self, A, B, E_idx): | |
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L] | |
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K] | |
RBF_A_B = self._rbf(D_A_B_neighbors) | |
return RBF_A_B | |
def forward(self, X, mask, residue_idx, chain_labels): | |
if self.training and self.augment_eps > 0: | |
X = X + self.augment_eps * torch.randn_like(X) | |
b = X[:,:,1,:] - X[:,:,0,:] | |
c = X[:,:,2,:] - X[:,:,1,:] | |
a = torch.cross(b, c, dim=-1) | |
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + X[:,:,1,:] | |
Ca = X[:,:,1,:] | |
N = X[:,:,0,:] | |
C = X[:,:,2,:] | |
O = X[:,:,3,:] | |
D_neighbors, E_idx = self._dist(Ca, mask) | |
RBF_all = [] | |
RBF_all.append(self._rbf(D_neighbors)) #Ca-Ca | |
RBF_all.append(self._get_rbf(N, N, E_idx)) #N-N | |
RBF_all.append(self._get_rbf(C, C, E_idx)) #C-C | |
RBF_all.append(self._get_rbf(O, O, E_idx)) #O-O | |
RBF_all.append(self._get_rbf(Cb, Cb, E_idx)) #Cb-Cb | |
RBF_all.append(self._get_rbf(Ca, N, E_idx)) #Ca-N | |
RBF_all.append(self._get_rbf(Ca, C, E_idx)) #Ca-C | |
RBF_all.append(self._get_rbf(Ca, O, E_idx)) #Ca-O | |
RBF_all.append(self._get_rbf(Ca, Cb, E_idx)) #Ca-Cb | |
RBF_all.append(self._get_rbf(N, C, E_idx)) #N-C | |
RBF_all.append(self._get_rbf(N, O, E_idx)) #N-O | |
RBF_all.append(self._get_rbf(N, Cb, E_idx)) #N-Cb | |
RBF_all.append(self._get_rbf(Cb, C, E_idx)) #Cb-C | |
RBF_all.append(self._get_rbf(Cb, O, E_idx)) #Cb-O | |
RBF_all.append(self._get_rbf(O, C, E_idx)) #O-C | |
RBF_all.append(self._get_rbf(N, Ca, E_idx)) #N-Ca | |
RBF_all.append(self._get_rbf(C, Ca, E_idx)) #C-Ca | |
RBF_all.append(self._get_rbf(O, Ca, E_idx)) #O-Ca | |
RBF_all.append(self._get_rbf(Cb, Ca, E_idx)) #Cb-Ca | |
RBF_all.append(self._get_rbf(C, N, E_idx)) #C-N | |
RBF_all.append(self._get_rbf(O, N, E_idx)) #O-N | |
RBF_all.append(self._get_rbf(Cb, N, E_idx)) #Cb-N | |
RBF_all.append(self._get_rbf(C, Cb, E_idx)) #C-Cb | |
RBF_all.append(self._get_rbf(O, Cb, E_idx)) #O-Cb | |
RBF_all.append(self._get_rbf(C, O, E_idx)) #C-O | |
RBF_all = torch.cat(tuple(RBF_all), dim=-1) | |
offset = residue_idx[:,:,None]-residue_idx[:,None,:] | |
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K] | |
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long() #find self vs non-self interaction | |
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0] | |
E_positional = self.embeddings(offset.long(), E_chains) | |
E = torch.cat((E_positional, RBF_all), -1) | |
E = self.edge_embedding(E) | |
E = self.norm_edges(E) | |
return E, E_idx | |
class ProteinMPNN(nn.Module): | |
def __init__(self, num_letters=21, node_features=128, edge_features=128, | |
hidden_dim=128, num_encoder_layers=3, num_decoder_layers=3, | |
vocab=21, k_neighbors=32, augment_eps=0.1, dropout=0.1): | |
super(ProteinMPNN, self).__init__() | |
# Hyperparameters | |
self.node_features = node_features | |
self.edge_features = edge_features | |
self.hidden_dim = hidden_dim | |
self.features = ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps) | |
self.W_e = nn.Linear(edge_features, hidden_dim, bias=True) | |
self.W_s = nn.Embedding(vocab, hidden_dim) | |
# Encoder layers | |
self.encoder_layers = nn.ModuleList([ | |
EncLayer(hidden_dim, hidden_dim*2, dropout=dropout) | |
for _ in range(num_encoder_layers) | |
]) | |
# Decoder layers | |
self.decoder_layers = nn.ModuleList([ | |
DecLayer(hidden_dim, hidden_dim*3, dropout=dropout) | |
for _ in range(num_decoder_layers) | |
]) | |
self.W_out = nn.Linear(hidden_dim, num_letters, bias=True) | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, X, S, mask, chain_M, residue_idx, chain_encoding_all): | |
""" Graph-conditioned sequence model """ | |
device=X.device | |
# Prepare node and edge embeddings | |
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all) | |
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device) | |
h_E = self.W_e(E) | |
# Encoder is unmasked self-attention | |
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1) | |
mask_attend = mask.unsqueeze(-1) * mask_attend | |
for layer in self.encoder_layers: | |
h_V, h_E = torch.utils.checkpoint.checkpoint(layer, h_V, h_E, E_idx, mask, mask_attend) | |
# Concatenate sequence embeddings for autoregressive decoder | |
h_S = self.W_s(S) | |
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx) | |
# Build encoder embeddings | |
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx) | |
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx) | |
chain_M = chain_M*mask #update chain_M to include missing regions | |
decoding_order = torch.argsort((chain_M+0.0001)*(torch.abs(torch.randn(chain_M.shape, device=device)))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0] | |
mask_size = E_idx.shape[1] | |
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float() | |
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse) | |
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1) | |
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1]) | |
mask_bw = mask_1D * mask_attend | |
mask_fw = mask_1D * (1. - mask_attend) | |
h_EXV_encoder_fw = mask_fw * h_EXV_encoder | |
for layer in self.decoder_layers: | |
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx) | |
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw | |
h_V = torch.utils.checkpoint.checkpoint(layer, h_V, h_ESV, mask) | |
logits = self.W_out(h_V) | |
log_probs = F.log_softmax(logits, dim=-1) | |
return log_probs | |
class NoamOpt: | |
"Optim wrapper that implements rate." | |
def __init__(self, model_size, factor, warmup, optimizer, step): | |
self.optimizer = optimizer | |
self._step = step | |
self.warmup = warmup | |
self.factor = factor | |
self.model_size = model_size | |
self._rate = 0 | |
def param_groups(self): | |
"""Return param_groups.""" | |
return self.optimizer.param_groups | |
def step(self): | |
"Update parameters and rate" | |
self._step += 1 | |
rate = self.rate() | |
for p in self.optimizer.param_groups: | |
p['lr'] = rate | |
self._rate = rate | |
self.optimizer.step() | |
def rate(self, step = None): | |
"Implement `lrate` above" | |
if step is None: | |
step = self._step | |
return self.factor * \ | |
(self.model_size ** (-0.5) * | |
min(step ** (-0.5), step * self.warmup ** (-1.5))) | |
def zero_grad(self): | |
self.optimizer.zero_grad() | |
def get_std_opt(parameters, d_model, step): | |
return NoamOpt( | |
d_model, 2, 4000, torch.optim.Adam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9), step | |
) | |