Spaces:
Sleeping
Sleeping
for logreg custom class
Browse files- models/__init__.py +0 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/model1/Custom_class.py +40 -0
- models/model1/__init__.py +0 -0
- models/model1/__pycache__/Custom_class.cpython-310.pyc +0 -0
- models/model1/__pycache__/__init__.cpython-310.pyc +0 -0
- models/model1/model_weights.pth +0 -3
- models/model2/__init__.py +0 -0
- models/model2/model.py +5 -0
- pages/comments.py +0 -0
- pages/policlinic.py +3 -1
models/__init__.py
ADDED
File without changes
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (148 Bytes). View file
|
|
models/model1/Custom_class.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from sklearn.decomposition import TruncatedSVD
|
7 |
+
from sklearn.pipeline import Pipeline, FeatureUnion
|
8 |
+
from sklearn.linear_model import LogisticRegression
|
9 |
+
from sklearn.preprocessing import Normalizer
|
10 |
+
import joblib
|
11 |
+
import nltk
|
12 |
+
from nltk.corpus import stopwords
|
13 |
+
from pymorphy2 import MorphAnalyzer
|
14 |
+
import string
|
15 |
+
|
16 |
+
nltk.download('stopwords')
|
17 |
+
nltk.download('punkt')
|
18 |
+
|
19 |
+
class TextPreprocessor(BaseEstimator, TransformerMixin):
|
20 |
+
def __init__(self):
|
21 |
+
self.stop_words = set(stopwords.words('russian'))
|
22 |
+
self.morph = MorphAnalyzer()
|
23 |
+
|
24 |
+
def preprocess_text(self, text):
|
25 |
+
# Удаление всего, что не является буквами или знаками препинания
|
26 |
+
clean_pattern = re.compile(r'[^a-zA-Zа-яА-ЯёЁ0-9.,!?;:\s]')
|
27 |
+
text = clean_pattern.sub('', text)
|
28 |
+
url_pattern = re.compile(r'http\S+|www\S+|https\S+')
|
29 |
+
text = url_pattern.sub(r'', text)
|
30 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
31 |
+
text = text.lower()
|
32 |
+
tokens = text.split()
|
33 |
+
lemmatized_text = ' '.join([self.morph.parse(word)[0].normal_form for word in tokens if word not in self.stop_words])
|
34 |
+
return lemmatized_text
|
35 |
+
|
36 |
+
def fit(self, X, y=None):
|
37 |
+
return self
|
38 |
+
|
39 |
+
def transform(self, X, y=None):
|
40 |
+
return X.apply(self.preprocess_text)
|
models/model1/__init__.py
ADDED
File without changes
|
models/model1/__pycache__/Custom_class.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
models/model1/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (155 Bytes). View file
|
|
models/model1/model_weights.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:da7fd2151d6a5446fc178462ff93ee61c24f98cb0aa41343e2e8c36802e2170b
|
3 |
-
size 47712485
|
|
|
|
|
|
|
|
models/model2/__init__.py
ADDED
File without changes
|
models/model2/model.py
CHANGED
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class BERTClassifier(nn.Module):
|
2 |
def __init__(self):
|
3 |
super().__init__()
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
|
5 |
+
|
6 |
class BERTClassifier(nn.Module):
|
7 |
def __init__(self):
|
8 |
super().__init__()
|
pages/comments.py
ADDED
File without changes
|
pages/policlinic.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
import joblib
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
# Load the trained pipeline
|
6 |
-
pipeline = joblib.load('logistic_regression_pipeline.pkl')
|
7 |
|
8 |
# Streamlit application
|
9 |
st.title('Классификация отзывов на русском языке')
|
@@ -13,3 +14,4 @@ input_text = st.text_area('Введите текст отзыва')
|
|
13 |
if st.button('Предсказать'):
|
14 |
prediction = pipeline.predict(pd.Series([input_text]))
|
15 |
st.write(f'Предсказанный класс с помощью логрег: {prediction[0]}')
|
|
|
|
1 |
import streamlit as st
|
2 |
import joblib
|
3 |
import pandas as pd
|
4 |
+
from models.model1.Custom_class import TextPreprocessor
|
5 |
|
6 |
# Load the trained pipeline
|
7 |
+
pipeline = joblib.load('models/model1/logistic_regression_pipeline.pkl')
|
8 |
|
9 |
# Streamlit application
|
10 |
st.title('Классификация отзывов на русском языке')
|
|
|
14 |
if st.button('Предсказать'):
|
15 |
prediction = pipeline.predict(pd.Series([input_text]))
|
16 |
st.write(f'Предсказанный класс с помощью логрег: {prediction[0]}')
|
17 |
+
st.write(f'1 - negative, 0 - positive')
|