|
import gradio as gr |
|
import torch |
|
|
|
|
|
from diffusers import DiffusionPipeline |
|
|
|
def generate_image(prompt): |
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipeline = pipeline.to("cuda") |
|
num_inference_steps = 20 |
|
|
|
generator = torch.Generator("cuda").manual_seed(0) |
|
image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] |
|
|
|
return image |
|
|
|
iface = gr.Interface( |
|
fn=generate_image, |
|
inputs="text", |
|
outputs="image", |
|
title="Diffusion d'images", |
|
description="Générez des images à partir d'une description.", |
|
) |
|
|
|
iface.launch() |