ProfessorCEO's picture
Cool Shot Systems
79d07d9 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load a SMALL and FAST model
print("Loading AI model...")
model_name = "microsoft/DialoGPT-small" # Small = Fast!
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
print("Model loaded!")
# Store chat history for context
chat_history_ids = None
def chat(message, history):
"""
Fast AI chat using DialoGPT-small model.
"""
global chat_history_ids
try:
# Encode user input
new_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt')
# Append to chat history or start fresh
if chat_history_ids is not None and len(history) > 0:
bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1)
else:
bot_input_ids = new_input_ids
# Generate response (fast settings)
chat_history_ids = model.generate(
bot_input_ids,
max_length=200,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_k=50,
temperature=0.7
)
# Decode response
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response if response.strip() else "Hmm, let me think... Could you say that differently?"
except Exception as e:
chat_history_ids = None # Reset on error
return f"Let me try again: {str(e)}"
# Create Gradio Chat Interface
demo = gr.ChatInterface(
fn=chat,
title="πŸ€– AI Chat Assistant",
description="Fast AI Chat - Powered by DialoGPT",
examples=["Hello!", "Tell me a joke", "How are you?", "What's your name?"]
)
if __name__ == "__main__":
demo.launch()