Prof-Reza's picture
Upload folder using huggingface_hub
e0f66ff
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from ._explorers import LMExplorer
from ...environment import AudioCraftEnvironment
@LMExplorer
def explorer(launcher):
partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
launcher.slurm_(gpus=32, partition=partitions)
launcher.bind_(solver='musicgen/musicgen_base_32khz')
# replace this by the desired music dataset
launcher.bind_(dset='internal/music_400k_32khz')
fsdp = {'autocast': False, 'fsdp.use': True}
medium = {'model/lm/model_scale': 'medium'}
large = {'model/lm/model_scale': 'large'}
cfg_low = {'classifier_free_guidance.training_dropout': 0.2}
wd_low = {'conditioners.description.t5.word_dropout': 0.2}
adam = {'optim.optimizer': 'adamw', 'optim.lr': 1e-4}
# BEGINNING OF CACHE WRITING JOBS.
cache_write = {
'cache.path': '/fsx-codegen/defossez/cache/interleave_stereo_nv_32k',
'cache.write': True,
'generate.every': 500,
'evaluate.every': 500,
'logging.log_updates': 50,
}
cache_sub = launcher.bind({'model/lm/model_scale': 'xsmall', 'conditioner': 'none'})
cache_sub.bind_({'deadlock.use': True})
cache_sub.slurm_(gpus=8)
with launcher.job_array():
num_shards = 10 # total number of jobs running in parallel.
for shard in range(0, num_shards):
launcher(cache_write, {'cache.write_num_shards': num_shards, 'cache.write_shard': shard})
# REMOVE THE FOLLOWING RETURN STATEMENT ONCE THE ABOVE JOBS ARE DONE,
# OR SUFFICIENTLY AHEAD.
return
cache = {
'cache.path': '/fsx-codegen/defossez/cache/interleave_stereo_nv_32k',
}
launcher.bind_(fsdp, cache)
launcher.slurm_(gpus=32).bind_(label='32gpus')
with launcher.job_array():
sub = launcher.bind()
sub()
launcher.slurm_(gpus=64).bind_(label='64gpus')
with launcher.job_array():
sub = launcher.bind()
sub(medium, adam)
launcher.slurm_(gpus=96).bind_(label='96gpus')
with launcher.job_array():
sub = launcher.bind()
sub(large, cfg_low, wd_low, adam, {'optim.max_norm': 3})