Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +486 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Just search - A Smart Search Agent using Menlo/Lucy-128k
|
| 4 |
+
Part of the Just, AKA Simple series
|
| 5 |
+
Built with Gradio, DuckDuckGo Search, and Hugging Face Transformers
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 11 |
+
from duckduckgo_search import DDGS
|
| 12 |
+
import json
|
| 13 |
+
import re
|
| 14 |
+
import time
|
| 15 |
+
from typing import List, Dict, Tuple
|
| 16 |
+
import spaces
|
| 17 |
+
|
| 18 |
+
# Initialize the model and tokenizer globally for efficiency
|
| 19 |
+
MODEL_NAME = "Menlo/Lucy-128k"
|
| 20 |
+
tokenizer = None
|
| 21 |
+
model = None
|
| 22 |
+
search_pipeline = None
|
| 23 |
+
|
| 24 |
+
def initialize_model():
|
| 25 |
+
"""Initialize the Menlo/Lucy-128k model and tokenizer"""
|
| 26 |
+
global tokenizer, model, search_pipeline
|
| 27 |
+
try:
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
MODEL_NAME,
|
| 31 |
+
torch_dtype=torch.float16,
|
| 32 |
+
device_map="auto",
|
| 33 |
+
trust_remote_code=True
|
| 34 |
+
)
|
| 35 |
+
search_pipeline = pipeline(
|
| 36 |
+
"text-generation",
|
| 37 |
+
model=model,
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
+
torch_dtype=torch.float16,
|
| 40 |
+
device_map="auto",
|
| 41 |
+
max_new_tokens=2048,
|
| 42 |
+
temperature=0.7,
|
| 43 |
+
do_sample=True,
|
| 44 |
+
pad_token_id=tokenizer.eos_token_id
|
| 45 |
+
)
|
| 46 |
+
return True
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Error initializing model: {e}")
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
def clean_response(text: str) -> str:
|
| 52 |
+
"""Clean up the AI response to extract just the relevant content"""
|
| 53 |
+
# Remove common prefixes and artifacts
|
| 54 |
+
text = re.sub(r'^(Assistant:|AI:|Response:|Answer:)\s*', '', text.strip())
|
| 55 |
+
text = re.sub(r'\[INST\].*?\[\/INST\]', '', text)
|
| 56 |
+
text = re.sub(r'<\|.*?\|>', '', text)
|
| 57 |
+
return text.strip()
|
| 58 |
+
|
| 59 |
+
@spaces.GPU
|
| 60 |
+
def generate_search_queries(user_query: str) -> List[str]:
|
| 61 |
+
"""Generate multiple search queries based on user input using AI"""
|
| 62 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 63 |
+
You are a search query generator. Given a user's question, generate 3-5 different search queries that would help find comprehensive information to answer their question. Return only the search queries, one per line, without numbering or bullet points.
|
| 64 |
+
|
| 65 |
+
Example:
|
| 66 |
+
User: "What are the latest developments in AI?"
|
| 67 |
+
latest AI developments 2024
|
| 68 |
+
artificial intelligence breakthroughs recent
|
| 69 |
+
AI technology advances news
|
| 70 |
+
machine learning innovations 2024
|
| 71 |
+
|
| 72 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 73 |
+
{user_query}
|
| 74 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
response = search_pipeline(prompt, max_new_tokens=200, temperature=0.3)
|
| 78 |
+
generated_text = response[0]['generated_text']
|
| 79 |
+
|
| 80 |
+
# Extract just the assistant's response
|
| 81 |
+
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
|
| 82 |
+
assistant_response = clean_response(assistant_response)
|
| 83 |
+
|
| 84 |
+
# Split into individual queries and clean them
|
| 85 |
+
queries = [q.strip() for q in assistant_response.split('\n') if q.strip()]
|
| 86 |
+
# Filter out any non-query text
|
| 87 |
+
queries = [q for q in queries if len(q) > 5 and not q.startswith('Note:') and not q.startswith('Example:')]
|
| 88 |
+
|
| 89 |
+
return queries[:5] # Return max 5 queries
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Error generating queries: {e}")
|
| 92 |
+
# Fallback to simple query variations
|
| 93 |
+
return [user_query, f"{user_query} 2024", f"{user_query} latest"]
|
| 94 |
+
|
| 95 |
+
def search_web(queries: List[str]) -> List[Dict]:
|
| 96 |
+
"""Search the web using DuckDuckGo with multiple queries"""
|
| 97 |
+
all_results = []
|
| 98 |
+
ddgs = DDGS()
|
| 99 |
+
|
| 100 |
+
for query in queries:
|
| 101 |
+
try:
|
| 102 |
+
results = ddgs.text(query, max_results=5, region='wt-wt', safesearch='moderate')
|
| 103 |
+
for result in results:
|
| 104 |
+
result['search_query'] = query
|
| 105 |
+
all_results.append(result)
|
| 106 |
+
time.sleep(0.5) # Rate limiting
|
| 107 |
+
except Exception as e:
|
| 108 |
+
print(f"Error searching for '{query}': {e}")
|
| 109 |
+
continue
|
| 110 |
+
|
| 111 |
+
# Remove duplicates based on URL
|
| 112 |
+
seen_urls = set()
|
| 113 |
+
unique_results = []
|
| 114 |
+
for result in all_results:
|
| 115 |
+
if result['href'] not in seen_urls:
|
| 116 |
+
seen_urls.add(result['href'])
|
| 117 |
+
unique_results.append(result)
|
| 118 |
+
|
| 119 |
+
return unique_results[:15] # Return max 15 results
|
| 120 |
+
|
| 121 |
+
@spaces.GPU
|
| 122 |
+
def filter_relevant_results(user_query: str, search_results: List[Dict]) -> List[Dict]:
|
| 123 |
+
"""Use AI to filter and rank search results by relevance"""
|
| 124 |
+
if not search_results:
|
| 125 |
+
return []
|
| 126 |
+
|
| 127 |
+
# Prepare results summary for AI
|
| 128 |
+
results_text = ""
|
| 129 |
+
for i, result in enumerate(search_results[:12]): # Limit to avoid token overflow
|
| 130 |
+
results_text += f"{i+1}. Title: {result.get('title', 'No title')}\n"
|
| 131 |
+
results_text += f" URL: {result.get('href', 'No URL')}\n"
|
| 132 |
+
results_text += f" Snippet: {result.get('body', 'No description')[:200]}...\n\n"
|
| 133 |
+
|
| 134 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 135 |
+
You are a search result evaluator. Given a user's question and search results, identify which results are most relevant and helpful for answering the question.
|
| 136 |
+
|
| 137 |
+
Return only the numbers of the most relevant results (1-5 results maximum), separated by commas. Consider:
|
| 138 |
+
- Direct relevance to the question
|
| 139 |
+
- Credibility of the source
|
| 140 |
+
- Recency of information
|
| 141 |
+
- Comprehensiveness of content
|
| 142 |
+
|
| 143 |
+
Example response: 1, 3, 7
|
| 144 |
+
|
| 145 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 146 |
+
Question: {user_query}
|
| 147 |
+
|
| 148 |
+
Search Results:
|
| 149 |
+
{results_text}
|
| 150 |
+
|
| 151 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 152 |
+
|
| 153 |
+
try:
|
| 154 |
+
response = search_pipeline(prompt, max_new_tokens=100, temperature=0.1)
|
| 155 |
+
generated_text = response[0]['generated_text']
|
| 156 |
+
|
| 157 |
+
# Extract assistant's response
|
| 158 |
+
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
|
| 159 |
+
assistant_response = clean_response(assistant_response)
|
| 160 |
+
|
| 161 |
+
# Extract numbers
|
| 162 |
+
numbers = re.findall(r'\d+', assistant_response)
|
| 163 |
+
selected_indices = [int(n) - 1 for n in numbers if int(n) <= len(search_results)]
|
| 164 |
+
|
| 165 |
+
return [search_results[i] for i in selected_indices if 0 <= i < len(search_results)][:5]
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(f"Error filtering results: {e}")
|
| 168 |
+
return search_results[:5] # Fallback to first 5 results
|
| 169 |
+
|
| 170 |
+
@spaces.GPU
|
| 171 |
+
def generate_final_answer(user_query: str, selected_results: List[Dict]) -> str:
|
| 172 |
+
"""Generate final answer based on selected search results"""
|
| 173 |
+
if not selected_results:
|
| 174 |
+
return "I couldn't find relevant information to answer your question. Please try rephrasing your query."
|
| 175 |
+
|
| 176 |
+
# Prepare context from selected results
|
| 177 |
+
context = ""
|
| 178 |
+
for i, result in enumerate(selected_results):
|
| 179 |
+
context += f"Source {i+1}: {result.get('title', 'Unknown')}\n"
|
| 180 |
+
context += f"Content: {result.get('body', 'No content available')}\n"
|
| 181 |
+
context += f"URL: {result.get('href', 'No URL')}\n\n"
|
| 182 |
+
|
| 183 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 184 |
+
You are a helpful research assistant. Based on the provided search results, give a comprehensive answer to the user's question.
|
| 185 |
+
|
| 186 |
+
Guidelines:
|
| 187 |
+
- Synthesize information from multiple sources
|
| 188 |
+
- Be accurate and factual
|
| 189 |
+
- Cite sources when possible
|
| 190 |
+
- If information is conflicting, mention it
|
| 191 |
+
- Keep the answer well-structured and easy to read
|
| 192 |
+
- Include relevant URLs for further reading
|
| 193 |
+
|
| 194 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 195 |
+
Question: {user_query}
|
| 196 |
+
|
| 197 |
+
Search Results:
|
| 198 |
+
{context}
|
| 199 |
+
|
| 200 |
+
Please provide a comprehensive answer based on these sources.
|
| 201 |
+
|
| 202 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 203 |
+
|
| 204 |
+
try:
|
| 205 |
+
response = search_pipeline(prompt, max_new_tokens=1024, temperature=0.2)
|
| 206 |
+
generated_text = response[0]['generated_text']
|
| 207 |
+
|
| 208 |
+
# Extract assistant's response
|
| 209 |
+
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
|
| 210 |
+
answer = clean_response(assistant_response)
|
| 211 |
+
|
| 212 |
+
return answer
|
| 213 |
+
except Exception as e:
|
| 214 |
+
print(f"Error generating final answer: {e}")
|
| 215 |
+
return "I encountered an error while processing the search results. Please try again."
|
| 216 |
+
|
| 217 |
+
def search_agent_workflow(user_query: str, progress=gr.Progress()) -> Tuple[str, str]:
|
| 218 |
+
"""Main workflow that orchestrates the search agent"""
|
| 219 |
+
if not user_query.strip():
|
| 220 |
+
return "Please enter a search query.", ""
|
| 221 |
+
|
| 222 |
+
progress(0.1, desc="Initializing...")
|
| 223 |
+
|
| 224 |
+
# Step 1: Generate search queries
|
| 225 |
+
progress(0.2, desc="Generating search queries...")
|
| 226 |
+
queries = generate_search_queries(user_query)
|
| 227 |
+
queries_text = "Generated queries:\n" + "\n".join(f"β’ {q}" for q in queries)
|
| 228 |
+
|
| 229 |
+
# Step 2: Search the web
|
| 230 |
+
progress(0.4, desc="Searching the web...")
|
| 231 |
+
search_results = search_web(queries)
|
| 232 |
+
|
| 233 |
+
if not search_results:
|
| 234 |
+
return "No search results found. Please try a different query.", queries_text
|
| 235 |
+
|
| 236 |
+
# Step 3: Filter relevant results
|
| 237 |
+
progress(0.6, desc="Filtering relevant results...")
|
| 238 |
+
relevant_results = filter_relevant_results(user_query, search_results)
|
| 239 |
+
|
| 240 |
+
# Step 4: Generate final answer
|
| 241 |
+
progress(0.8, desc="Generating comprehensive answer...")
|
| 242 |
+
final_answer = generate_final_answer(user_query, relevant_results)
|
| 243 |
+
|
| 244 |
+
progress(1.0, desc="Complete!")
|
| 245 |
+
|
| 246 |
+
# Prepare debug info
|
| 247 |
+
debug_info = f"{queries_text}\n\nSelected {len(relevant_results)} relevant sources:\n"
|
| 248 |
+
for i, result in enumerate(relevant_results):
|
| 249 |
+
debug_info += f"{i+1}. {result.get('title', 'No title')} - {result.get('href', 'No URL')}\n"
|
| 250 |
+
|
| 251 |
+
return final_answer, debug_info
|
| 252 |
+
|
| 253 |
+
# Custom CSS for dark blue theme and mobile responsiveness
|
| 254 |
+
custom_css = """
|
| 255 |
+
/* Dark blue theme */
|
| 256 |
+
:root {
|
| 257 |
+
--primary-bg: #0a1628;
|
| 258 |
+
--secondary-bg: #1e3a5f;
|
| 259 |
+
--accent-bg: #2563eb;
|
| 260 |
+
--text-primary: #f8fafc;
|
| 261 |
+
--text-secondary: #cbd5e1;
|
| 262 |
+
--border-color: #334155;
|
| 263 |
+
--input-bg: #1e293b;
|
| 264 |
+
--button-bg: #3b82f6;
|
| 265 |
+
--button-hover: #2563eb;
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
/* Global styles */
|
| 269 |
+
.gradio-container {
|
| 270 |
+
background: linear-gradient(135deg, var(--primary-bg) 0%, var(--secondary-bg) 100%) !important;
|
| 271 |
+
color: var(--text-primary) !important;
|
| 272 |
+
font-family: 'Inter', 'Segoe UI', system-ui, sans-serif !important;
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
/* Mobile responsiveness */
|
| 276 |
+
@media (max-width: 768px) {
|
| 277 |
+
.gradio-container {
|
| 278 |
+
padding: 10px !important;
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
.gr-form {
|
| 282 |
+
gap: 15px !important;
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
.gr-button {
|
| 286 |
+
font-size: 16px !important;
|
| 287 |
+
padding: 12px 20px !important;
|
| 288 |
+
}
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
/* Input styling */
|
| 292 |
+
.gr-textbox textarea, .gr-textbox input {
|
| 293 |
+
background: var(--input-bg) !important;
|
| 294 |
+
border: 1px solid var(--border-color) !important;
|
| 295 |
+
color: var(--text-primary) !important;
|
| 296 |
+
border-radius: 8px !important;
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
/* Button styling */
|
| 300 |
+
.gr-button {
|
| 301 |
+
background: linear-gradient(135deg, var(--button-bg) 0%, var(--accent-bg) 100%) !important;
|
| 302 |
+
color: white !important;
|
| 303 |
+
border: none !important;
|
| 304 |
+
border-radius: 8px !important;
|
| 305 |
+
font-weight: 600 !important;
|
| 306 |
+
transition: all 0.3s ease !important;
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
+
.gr-button:hover {
|
| 310 |
+
background: linear-gradient(135deg, var(--button-hover) 0%, var(--button-bg) 100%) !important;
|
| 311 |
+
transform: translateY(-1px) !important;
|
| 312 |
+
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.3) !important;
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
+
/* Output styling */
|
| 316 |
+
.gr-markdown, .gr-textbox {
|
| 317 |
+
background: var(--input-bg) !important;
|
| 318 |
+
border: 1px solid var(--border-color) !important;
|
| 319 |
+
border-radius: 8px !important;
|
| 320 |
+
color: var(--text-primary) !important;
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
/* Header styling */
|
| 324 |
+
.gr-markdown h1 {
|
| 325 |
+
color: var(--accent-bg) !important;
|
| 326 |
+
text-align: center !important;
|
| 327 |
+
margin-bottom: 20px !important;
|
| 328 |
+
font-size: 2.5rem !important;
|
| 329 |
+
font-weight: 700 !important;
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
/* Loading animation */
|
| 333 |
+
.gr-loading {
|
| 334 |
+
background: var(--secondary-bg) !important;
|
| 335 |
+
border-radius: 8px !important;
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
/* Scrollbar styling */
|
| 339 |
+
::-webkit-scrollbar {
|
| 340 |
+
width: 8px;
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
::-webkit-scrollbar-track {
|
| 344 |
+
background: var(--primary-bg);
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
::-webkit-scrollbar-thumb {
|
| 348 |
+
background: var(--accent-bg);
|
| 349 |
+
border-radius: 4px;
|
| 350 |
+
}
|
| 351 |
+
|
| 352 |
+
::-webkit-scrollbar-thumb:hover {
|
| 353 |
+
background: var(--button-hover);
|
| 354 |
+
}
|
| 355 |
+
"""
|
| 356 |
+
|
| 357 |
+
def create_interface():
|
| 358 |
+
"""Create the Gradio interface"""
|
| 359 |
+
with gr.Blocks(
|
| 360 |
+
theme=gr.themes.Base(
|
| 361 |
+
primary_hue="blue",
|
| 362 |
+
secondary_hue="slate",
|
| 363 |
+
neutral_hue="slate",
|
| 364 |
+
text_size="lg",
|
| 365 |
+
spacing_size="lg",
|
| 366 |
+
radius_size="md"
|
| 367 |
+
).set(
|
| 368 |
+
body_background_fill="*primary_950",
|
| 369 |
+
body_text_color="*neutral_50",
|
| 370 |
+
background_fill_primary="*primary_900",
|
| 371 |
+
background_fill_secondary="*primary_800",
|
| 372 |
+
border_color_primary="*primary_700",
|
| 373 |
+
button_primary_background_fill="*primary_600",
|
| 374 |
+
button_primary_background_fill_hover="*primary_500",
|
| 375 |
+
button_primary_text_color="white",
|
| 376 |
+
input_background_fill="*primary_800",
|
| 377 |
+
input_border_color="*primary_600",
|
| 378 |
+
input_text_color="*neutral_50"
|
| 379 |
+
),
|
| 380 |
+
css=custom_css,
|
| 381 |
+
title="Just search - AI Search Agent",
|
| 382 |
+
head="<meta name='viewport' content='width=device-width, initial-scale=1.0'>"
|
| 383 |
+
) as interface:
|
| 384 |
+
|
| 385 |
+
gr.Markdown("# π Just search", elem_id="header")
|
| 386 |
+
gr.Markdown(
|
| 387 |
+
"*Part of the Just, AKA Simple series*\n\n"
|
| 388 |
+
"**Intelligent search agent powered by Menlo/Lucy-128k**\n\n"
|
| 389 |
+
"Ask any question and get comprehensive answers from the web.",
|
| 390 |
+
elem_id="description"
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
with gr.Row():
|
| 394 |
+
with gr.Column(scale=4):
|
| 395 |
+
query_input = gr.Textbox(
|
| 396 |
+
label="Your Question",
|
| 397 |
+
placeholder="Ask me anything... (e.g., 'What are the latest developments in AI?')",
|
| 398 |
+
lines=2,
|
| 399 |
+
elem_id="query-input"
|
| 400 |
+
)
|
| 401 |
+
with gr.Column(scale=1):
|
| 402 |
+
search_btn = gr.Button(
|
| 403 |
+
"π Search",
|
| 404 |
+
variant="primary",
|
| 405 |
+
size="lg",
|
| 406 |
+
elem_id="search-button"
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
with gr.Row():
|
| 410 |
+
answer_output = gr.Markdown(
|
| 411 |
+
label="Answer",
|
| 412 |
+
elem_id="answer-output",
|
| 413 |
+
height=400
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
with gr.Accordion("π§ Debug Info", open=False):
|
| 417 |
+
debug_output = gr.Textbox(
|
| 418 |
+
label="Search Process Details",
|
| 419 |
+
lines=8,
|
| 420 |
+
elem_id="debug-output"
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# Event handlers
|
| 424 |
+
search_btn.click(
|
| 425 |
+
fn=search_agent_workflow,
|
| 426 |
+
inputs=[query_input],
|
| 427 |
+
outputs=[answer_output, debug_output],
|
| 428 |
+
show_progress=True
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
query_input.submit(
|
| 432 |
+
fn=search_agent_workflow,
|
| 433 |
+
inputs=[query_input],
|
| 434 |
+
outputs=[answer_output, debug_output],
|
| 435 |
+
show_progress=True
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# Example queries
|
| 439 |
+
gr.Examples(
|
| 440 |
+
examples=[
|
| 441 |
+
["What are the latest breakthroughs in quantum computing?"],
|
| 442 |
+
["How does climate change affect ocean currents?"],
|
| 443 |
+
["What are the best practices for sustainable agriculture?"],
|
| 444 |
+
["Explain the recent developments in renewable energy technology"],
|
| 445 |
+
["What are the health benefits of the Mediterranean diet?"]
|
| 446 |
+
],
|
| 447 |
+
inputs=query_input,
|
| 448 |
+
outputs=[answer_output, debug_output],
|
| 449 |
+
fn=search_agent_workflow,
|
| 450 |
+
cache_examples=False
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
gr.Markdown(
|
| 454 |
+
"---\n**Note:** This search agent generates multiple queries, searches the web, "
|
| 455 |
+
"filters results for relevance, and provides comprehensive answers. "
|
| 456 |
+
"Results are sourced from DuckDuckGo search."
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
return interface
|
| 460 |
+
|
| 461 |
+
def main():
|
| 462 |
+
"""Main function to initialize and launch the app"""
|
| 463 |
+
print("π Initializing Just search...")
|
| 464 |
+
|
| 465 |
+
# Initialize the model
|
| 466 |
+
if not initialize_model():
|
| 467 |
+
print("β Failed to initialize model. Please check your setup.")
|
| 468 |
+
return
|
| 469 |
+
|
| 470 |
+
print("β
Model initialized successfully!")
|
| 471 |
+
print("π Creating interface...")
|
| 472 |
+
|
| 473 |
+
# Create and launch the interface
|
| 474 |
+
interface = create_interface()
|
| 475 |
+
|
| 476 |
+
print("π Just search is ready!")
|
| 477 |
+
interface.launch(
|
| 478 |
+
server_name="0.0.0.0",
|
| 479 |
+
server_port=7860,
|
| 480 |
+
share=True,
|
| 481 |
+
show_error=True,
|
| 482 |
+
debug=True
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
if __name__ == "__main__":
|
| 486 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
transformers>=4.30.0
|
| 4 |
+
duckduckgo-search>=3.8.0
|
| 5 |
+
spaces>=0.18.0
|
| 6 |
+
accelerate>=0.20.0
|
| 7 |
+
bitsandbytes>=0.39.0
|
| 8 |
+
sentencepiece>=0.1.99
|
| 9 |
+
protobuf>=3.20.0
|
| 10 |
+
numpy>=1.21.0
|