Spaces:
Sleeping
Sleeping
import json | |
import re | |
import requests | |
from tiktoken import get_encoding as tiktoken_get_encoding | |
from messagers.message_outputer import OpenaiStreamOutputer | |
from utils.logger import logger | |
from utils.enver import enver | |
class MessageStreamer: | |
MODEL_MAP = { | |
"mixtral-8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1", # 72.62, fast [Recommended] | |
"mistral-7b": "mistralai/Mistral-7B-Instruct-v0.2", # 65.71, fast | |
"nous-mixtral-8x7b": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
"zephyr-7b-beta": "HuggingFaceH4/zephyr-7b-beta", # β Too Slow | |
"starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1", # β Too Slow | |
# "llama-70b": "meta-llama/Llama-2-70b-chat-hf", # β Require Pro User | |
# "codellama-34b": "codellama/CodeLlama-34b-Instruct-hf", # β Low Score | |
# "falcon-180b": "tiiuae/falcon-180B-chat", # β Require Pro User | |
"default": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
} | |
STOP_SEQUENCES_MAP = { | |
"mixtral-8x7b": "</s>", | |
"mistral-7b": "</s>", | |
"nous-mixtral-8x7b": "<|im_end|>", | |
"zephyr-7b-beta": "</s>", | |
"starchat2-15b-v0.1": "<|im_end|>", | |
} | |
TOKEN_LIMIT_MAP = { | |
"mixtral-8x7b": 32768, | |
"mistral-7b": 32768, | |
"nous-mixtral-8x7b": 32768, | |
"zephyr-7b-beta": 4096, | |
"starchat2-15b-v0.1": 8192, | |
} | |
TOKEN_RESERVED = 100 | |
def __init__(self, model: str): | |
if model in self.MODEL_MAP.keys(): | |
self.model = model | |
else: | |
self.model = "default" | |
self.model_fullname = self.MODEL_MAP[self.model] | |
self.message_outputer = OpenaiStreamOutputer() | |
self.tokenizer = tiktoken_get_encoding("cl100k_base") | |
def parse_line(self, line): | |
line = line.decode("utf-8") | |
line = re.sub(r"data:\s*", "", line) | |
data = json.loads(line) | |
try: | |
content = data["token"]["text"] | |
except: | |
logger.err(data) | |
return content | |
def count_tokens(self, text): | |
tokens = self.tokenizer.encode(text) | |
token_count = len(tokens) | |
logger.note(f"Prompt Token Count: {token_count}") | |
return token_count | |
def chat_response( | |
self, | |
prompt: str = None, | |
temperature: float = 0.5, | |
top_p: float = 0.95, | |
max_new_tokens: int = None, | |
api_key: str = None, | |
use_cache: bool = False, | |
): | |
# https://huggingface.co/docs/api-inference/detailed_parameters?code=curl | |
# curl --proxy http://<server>:<port> https://api-inference.huggingface.co/models/<org>/<model_name> -X POST -d '{"inputs":"who are you?","parameters":{"max_new_token":64}}' -H 'Content-Type: application/json' -H 'Authorization: Bearer <HF_TOKEN>' | |
self.request_url = ( | |
f"https://api-inference.huggingface.co/models/{self.model_fullname}" | |
) | |
self.request_headers = { | |
"Content-Type": "application/json", | |
} | |
if api_key: | |
logger.note( | |
f"Using API Key: {api_key[:3]}{(len(api_key)-7)*'*'}{api_key[-4:]}" | |
) | |
self.request_headers["Authorization"] = f"Bearer {api_key}" | |
if temperature is None or temperature < 0: | |
temperature = 0.0 | |
# temperature must 0 < and < 1 for HF LLM models | |
temperature = max(temperature, 0.01) | |
temperature = min(temperature, 0.99) | |
top_p = max(top_p, 0.01) | |
top_p = min(top_p, 0.99) | |
token_limit = int( | |
self.TOKEN_LIMIT_MAP[self.model] | |
- self.TOKEN_RESERVED | |
- self.count_tokens(prompt) * 1.35 | |
) | |
if token_limit <= 0: | |
raise ValueError("Prompt exceeded token limit!") | |
if max_new_tokens is None or max_new_tokens <= 0: | |
max_new_tokens = token_limit | |
else: | |
max_new_tokens = min(max_new_tokens, token_limit) | |
# References: | |
# huggingface_hub/inference/_client.py: | |
# class InferenceClient > def text_generation() | |
# huggingface_hub/inference/_text_generation.py: | |
# class TextGenerationRequest > param `stream` | |
# https://huggingface.co/docs/text-generation-inference/conceptual/streaming#streaming-with-curl | |
# https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task | |
self.request_body = { | |
"inputs": prompt, | |
"parameters": { | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
"return_full_text": False, | |
}, | |
"options": { | |
"use_cache": use_cache, | |
}, | |
"stream": True, | |
} | |
if self.model in self.STOP_SEQUENCES_MAP.keys(): | |
self.stop_sequences = self.STOP_SEQUENCES_MAP[self.model] | |
# self.request_body["parameters"]["stop_sequences"] = [ | |
# self.STOP_SEQUENCES[self.model] | |
# ] | |
logger.back(self.request_url) | |
enver.set_envs(proxies=True) | |
stream_response = requests.post( | |
self.request_url, | |
headers=self.request_headers, | |
json=self.request_body, | |
proxies=enver.requests_proxies, | |
stream=True, | |
) | |
status_code = stream_response.status_code | |
if status_code == 200: | |
logger.success(status_code) | |
else: | |
logger.err(status_code) | |
return stream_response | |
def chat_return_dict(self, stream_response): | |
# https://platform.openai.com/docs/guides/text-generation/chat-completions-response-format | |
final_output = self.message_outputer.default_data.copy() | |
final_output["choices"] = [ | |
{ | |
"index": 0, | |
"finish_reason": "stop", | |
"message": { | |
"role": "assistant", | |
"content": "", | |
}, | |
} | |
] | |
logger.back(final_output) | |
final_content = "" | |
for line in stream_response.iter_lines(): | |
if not line: | |
continue | |
content = self.parse_line(line) | |
if content.strip() == self.stop_sequences: | |
logger.success("\n[Finished]") | |
break | |
else: | |
logger.back(content, end="") | |
final_content += content | |
if self.model in self.STOP_SEQUENCES_MAP.keys(): | |
final_content = final_content.replace(self.stop_sequences, "") | |
final_content = final_content.strip() | |
final_output["choices"][0]["message"]["content"] = final_content | |
return final_output | |
def chat_return_generator(self, stream_response): | |
is_finished = False | |
line_count = 0 | |
for line in stream_response.iter_lines(): | |
if line: | |
line_count += 1 | |
else: | |
continue | |
content = self.parse_line(line) | |
if content.strip() == self.stop_sequences: | |
content_type = "Finished" | |
logger.success("\n[Finished]") | |
is_finished = True | |
else: | |
content_type = "Completions" | |
if line_count == 1: | |
content = content.lstrip() | |
logger.back(content, end="") | |
output = self.message_outputer.output( | |
content=content, content_type=content_type | |
) | |
yield output | |
if not is_finished: | |
yield self.message_outputer.output(content="", content_type="Finished") | |