|
import argparse |
|
from pathlib import Path |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from torchvision import transforms |
|
from models.classifier import DogBreedClassifier |
|
|
|
def get_transform(): |
|
return transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--input_folder", type=str, required=True) |
|
parser.add_argument("--output_folder", type=str, required=True) |
|
parser.add_argument("--ckpt_path", type=str, required=True) |
|
args = parser.parse_args() |
|
|
|
|
|
Path(args.output_folder).mkdir(exist_ok=True) |
|
|
|
|
|
model = DogBreedClassifier.load_from_checkpoint(args.ckpt_path) |
|
model.eval() |
|
|
|
|
|
transform = get_transform() |
|
class_labels = ['Beagle', 'Boxer', 'Bulldog', 'Dachshund', 'German Shepherd', |
|
'Golden Retriever', 'Labrador Retriever', 'Poodle', 'Rottweiler', |
|
'Yorkshire Terrier'] |
|
|
|
for img_path in Path(args.input_folder).glob("*"): |
|
if img_path.suffix.lower() not in ['.jpg', '.jpeg', '.png']: |
|
continue |
|
|
|
|
|
img = Image.open(img_path).convert('RGB') |
|
img_tensor = transform(img).unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
output = model(img_tensor) |
|
probs = F.softmax(output, dim=1) |
|
pred_idx = torch.argmax(probs, dim=1).item() |
|
confidence = probs[0][pred_idx].item() |
|
|
|
|
|
result = f"{img_path.name}: {class_labels[pred_idx]} ({confidence:.2f})\n" |
|
with open(Path(args.output_folder) / "predictions.txt", "a") as f: |
|
f.write(result) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|