Spaces:
Sleeping
Sleeping
Priyanka-Kumavat
commited on
Commit
•
32b6f07
1
Parent(s):
97d7d24
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
import pickle
|
|
|
8 |
|
9 |
from datetime import datetime
|
10 |
from datetime import timedelta
|
@@ -36,64 +37,64 @@ with open('timeBand_le.pkl','rb') as file2:
|
|
36 |
# previous_number_of_repairs =
|
37 |
# st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 5 )',min_value=0,max_value=5,step=1)
|
38 |
|
39 |
-
# DATA from user
|
40 |
-
def user_report():
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
|
79 |
-
#Customer Data
|
80 |
-
user_data = user_report()
|
81 |
-
st.subheader("Entered Details")
|
82 |
-
st.write(user_data)
|
83 |
|
84 |
|
85 |
-
# define the prediction function
|
86 |
-
def predict_unrolled_value(user_data):
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
|
95 |
-
# Function calling
|
96 |
-
y_pred = int(predict_unrolled_value(user_data))
|
97 |
-
st.write("Click here to see the Predictions")
|
98 |
-
if st.button("Predict"):
|
99 |
-
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
import pickle
|
8 |
+
import os
|
9 |
|
10 |
from datetime import datetime
|
11 |
from datetime import timedelta
|
|
|
37 |
# previous_number_of_repairs =
|
38 |
# st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 5 )',min_value=0,max_value=5,step=1)
|
39 |
|
40 |
+
# # DATA from user
|
41 |
+
# def user_report():
|
42 |
|
43 |
+
# Share = round(float(st.sidebar.slider('Share', 0.000000, 100.000000, 0.611246)), 6)
|
44 |
+
# AMA = round(float(st.sidebar.slider('AMA', 0.000000, 45.000000, 4.196084)), 6)
|
45 |
+
# rate = round(float(st.sidebar.slider('rate', 0.000000, 1.500000, 0.018516)), 6)
|
46 |
+
# daily_reach = round(float(st.sidebar.slider('daily reach', 0.000000, 300.000000, 36.23)), 6)
|
47 |
+
# cume_reach = round(float(st.sidebar.slider('cume reach', 0.000000, 300.000000, 36.231006)), 6)
|
48 |
|
49 |
+
# # Output: {'Friday': 0, 'Monday': 1, 'Saturday': 2, 'Sunday': 3, 'Thursday': 4, 'Tuesday': 5, 'Wednesday': 6}
|
50 |
|
51 |
+
# Week_Day_Encoded = st.sidebar.selectbox("Week Day",
|
52 |
+
# ("Monday", "Tuesday","Wednesday","Thursday","Friday", "Saturday", "Sunday" ))
|
53 |
+
# if Week_Day_Encoded=='Monday':
|
54 |
+
# Week_Day_Encoded=1
|
55 |
+
# elif Week_Day_Encoded=="Tuesday":
|
56 |
+
# Week_Day_Encoded=5
|
57 |
+
# elif Week_Day_Encoded=="Wednesday":
|
58 |
+
# Week_Day_Encoded=6
|
59 |
+
# elif Week_Day_Encoded=="Thursday":
|
60 |
+
# Week_Day_Encoded =4
|
61 |
+
# elif Week_Day_Encoded=="Friday":
|
62 |
+
# Week_Day_Encoded =0
|
63 |
+
# elif Week_Day_Encoded=="Saturday":
|
64 |
+
# Week_Day_Encoded =2
|
65 |
+
# else:
|
66 |
+
# Week_Day_Encoded=3
|
67 |
|
68 |
+
# user_report_data = {
|
69 |
+
# 'Share': Share,
|
70 |
+
# 'AMA': AMA,
|
71 |
+
# 'rate': rate,
|
72 |
+
# 'daily reach': daily_reach,
|
73 |
+
# 'cume reach': cume_reach,
|
74 |
+
# 'Week_Day_Encoded': Week_Day_Encoded,
|
75 |
+
# 'Time_Band_Encoded': Time_Band_Encoded}
|
76 |
+
# report_data = pd.DataFrame(user_report_data, index=[0])
|
77 |
|
78 |
+
# return report_data
|
79 |
|
80 |
+
# #Customer Data
|
81 |
+
# user_data = user_report()
|
82 |
+
# st.subheader("Entered Details")
|
83 |
+
# st.write(user_data)
|
84 |
|
85 |
|
86 |
+
# # define the prediction function
|
87 |
+
# def predict_unrolled_value(user_data):
|
88 |
|
89 |
+
# # make the prediction using the loaded model and input data
|
90 |
+
# predicted_unrolled_value = model1.predict(user_data)
|
91 |
|
92 |
+
# # return the predicted max number of repairs as output
|
93 |
+
# return np.round(predicted_unrolled_value[0])
|
94 |
|
95 |
|
96 |
+
# # Function calling
|
97 |
+
# y_pred = int(predict_unrolled_value(user_data))
|
98 |
+
# st.write("Click here to see the Predictions")
|
99 |
+
# if st.button("Predict"):
|
100 |
+
# st.subheader(f"Predicted Unrolled Value: {y_pred} ")
|