|
|
import gradio as gr |
|
|
import pickle |
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
model = pickle.load(open('model.pkl', 'rb')) |
|
|
preprocessor = pickle.load(open('preprocess_pipeline.pkl', 'rb')) |
|
|
|
|
|
|
|
|
|
|
|
def call_gradio(Sex, Equipment, Age, BodyweightKg, BestSquatKg, Bestbenchkg): |
|
|
|
|
|
Age = float(Age) |
|
|
BodyweightKg = float(BodyweightKg) |
|
|
BestSquatKg = float(BestSquatKg) |
|
|
Bestbenchkg = float(Bestbenchkg) |
|
|
|
|
|
|
|
|
df_x = pd.DataFrame({ |
|
|
'Sex': [Sex], |
|
|
'Equipment': [Equipment], |
|
|
'Age': [Age], |
|
|
'BodyweightKg': [BodyweightKg], |
|
|
'BestSquatKg': [BestSquatKg], |
|
|
'Bestbench(kg)': [Bestbenchkg], |
|
|
}) |
|
|
|
|
|
|
|
|
categorical_features = ['Sex', 'Equipment'] |
|
|
numerical_features = df_x.drop(categorical_features, axis=1).columns.tolist() |
|
|
|
|
|
|
|
|
if not hasattr(preprocessor, 'transformers_'): |
|
|
raise RuntimeError("The preprocessor is not fitted yet. Fit the preprocessor before calling this function.") |
|
|
|
|
|
|
|
|
|
|
|
X_processed = preprocessor.transform(df_x) |
|
|
|
|
|
|
|
|
ohe = preprocessor.named_transformers_['cat'].named_steps['onehot'] |
|
|
cat_feature_names = ohe.get_feature_names_out(categorical_features) |
|
|
|
|
|
|
|
|
all_feature_names = numerical_features + list(cat_feature_names) |
|
|
|
|
|
|
|
|
X_processed_df = pd.DataFrame(X_processed, columns=all_feature_names) |
|
|
|
|
|
|
|
|
y_pred = model.predict(X_processed_df) |
|
|
|
|
|
max_kg = int(y_pred[0]) |
|
|
return max_kg |
|
|
|
|
|
|
|
|
sex_dropdown = gr.Dropdown(choices=['M', 'F'], label="Sex", info="Select Male or Female") |
|
|
equipment_dropdown = gr.Dropdown(choices=['Raw', 'Wraps', 'Single-ply', 'Multi-ply'], label="Equipment", info="Select the equipment used for the competition.") |
|
|
age_textbox = gr.Textbox(lines=1, label="Age", info="Enter your Age") |
|
|
bodyweight_kg_textbox = gr.Textbox(lines=1, label="BodyweightKg", info="Enter your Bodyweight in Kg") |
|
|
best_squat_kg_textbox = gr.Textbox(lines=1, label="BestSquatKg", info="Enter your Best Squat in Kg") |
|
|
best_bench_kg_textbox = gr.Textbox(lines=1, label="BestbenchKg", info="Enter your Best Bench in Kg") |
|
|
|
|
|
|
|
|
description = """ |
|
|
<div style='text-align: center;'> |
|
|
<h1 style='font-size: 50px;'>PowerLift Muscle Map</h1> |
|
|
<p>Use this model to estimate your best Deadlift (kg) based on your selected features. Input your details and see the predicted weight (kg) you could lift.</p> |
|
|
<p><strong>Output:</strong> Estimated Best Deadlift (kg)</p> |
|
|
<br> |
|
|
<p style='font-size: 10px; color: #555;'>❤️ PDS</p> |
|
|
</div> |
|
|
""" |
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=call_gradio, |
|
|
inputs=[sex_dropdown, equipment_dropdown, age_textbox, bodyweight_kg_textbox, best_squat_kg_textbox, best_bench_kg_textbox], |
|
|
outputs="number", |
|
|
description=description, |
|
|
) |
|
|
|
|
|
iface.launch() |