change pipeline to manual model
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
4 |
from paddleocr import PaddleOCR
|
5 |
from PIL import Image
|
6 |
-
from transformers import
|
7 |
from transformers.pipelines.document_question_answering import apply_tesseract
|
8 |
|
9 |
-
|
|
|
10 |
OCR = PaddleOCR(
|
11 |
use_angle_cls=True,
|
12 |
lang="en",
|
@@ -52,9 +54,34 @@ def predict(image: Image.Image, question: str, ocr_engine: str):
|
|
52 |
else:
|
53 |
raise ValueError(f"Unsupported ocr_engine={ocr_engine}")
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
gr.Interface(
|
@@ -66,7 +93,9 @@ gr.Interface(
|
|
66 |
],
|
67 |
outputs=[
|
68 |
gr.Textbox(label="Answer"),
|
69 |
-
gr.Number(label="
|
|
|
70 |
gr.Image(label="OCR results"),
|
71 |
],
|
|
|
72 |
).launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
import torch
|
5 |
from paddleocr import PaddleOCR
|
6 |
from PIL import Image
|
7 |
+
from transformers import AutoTokenizer, LayoutLMForQuestionAnswering
|
8 |
from transformers.pipelines.document_question_answering import apply_tesseract
|
9 |
|
10 |
+
MODEL = LayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa").eval()
|
11 |
+
TOKENIZER = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa")
|
12 |
OCR = PaddleOCR(
|
13 |
use_angle_cls=True,
|
14 |
lang="en",
|
|
|
54 |
else:
|
55 |
raise ValueError(f"Unsupported ocr_engine={ocr_engine}")
|
56 |
|
57 |
+
token_ids = TOKENIZER(question)["input_ids"]
|
58 |
+
token_boxes = [[0] * 4] * (len(token_ids) - 1) + [[1000] * 4]
|
59 |
+
|
60 |
+
token_ids.append(TOKENIZER.sep_token_id)
|
61 |
+
token_boxes.append([1000] * 4)
|
62 |
+
|
63 |
+
for word, box in zip(words, boxes):
|
64 |
+
new_ids = TOKENIZER(word, add_special_tokens=False)["input_ids"]
|
65 |
+
token_ids.extend(new_ids)
|
66 |
+
token_boxes.extend([box] * len(new_ids))
|
67 |
+
|
68 |
+
token_ids.append(TOKENIZER.sep_token_id)
|
69 |
+
token_boxes.append([1000] * 4)
|
70 |
+
|
71 |
+
with torch.inference_mode():
|
72 |
+
outputs = MODEL(
|
73 |
+
input_ids=torch.tensor(token_ids).unsqueeze(0),
|
74 |
+
bbox=torch.tensor(token_boxes).unsqueeze(0),
|
75 |
+
)
|
76 |
+
|
77 |
+
start_scores = outputs.start_logits.squeeze(0).softmax(-1)
|
78 |
+
end_scores = outputs.end_logits.squeeze(0).softmax(-1)
|
79 |
+
|
80 |
+
start_score, start_idx = start_scores.max(-1)
|
81 |
+
end_score, end_idx = end_scores.max(-1)
|
82 |
+
answer = TOKENIZER.decode(token_ids[start_idx : end_idx + 1])
|
83 |
+
|
84 |
+
return answer, start_score, end_score, image_np
|
85 |
|
86 |
|
87 |
gr.Interface(
|
|
|
93 |
],
|
94 |
outputs=[
|
95 |
gr.Textbox(label="Answer"),
|
96 |
+
gr.Number(label="Start score"),
|
97 |
+
gr.Number(label="End score"),
|
98 |
gr.Image(label="OCR results"),
|
99 |
],
|
100 |
+
examples=[["example_01.jpg", "When did the sample take place?", PADDLE_OCR_LABEL]],
|
101 |
).launch(server_name="0.0.0.0", server_port=7860)
|