|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from paddleocr import PaddleOCR |
|
from PIL import Image |
|
from transformers import AutoTokenizer, LayoutLMForQuestionAnswering |
|
from transformers.pipelines.document_question_answering import apply_tesseract |
|
|
|
model_tag = "impira/layoutlm-document-qa" |
|
MODEL = LayoutLMForQuestionAnswering.from_pretrained(model_tag).eval() |
|
TOKENIZER = AutoTokenizer.from_pretrained(model_tag) |
|
OCR = PaddleOCR( |
|
use_angle_cls=True, |
|
lang="en", |
|
det_limit_side_len=10_000, |
|
det_db_score_mode="slow", |
|
enable_mlkdnn=True, |
|
) |
|
|
|
|
|
PADDLE_OCR_LABEL = "PaddleOCR (en)" |
|
TESSERACT_LABEL = "Tesseract (HF default)" |
|
|
|
|
|
def predict(image: Image.Image, question: str, ocr_engine: str): |
|
image_np = np.array(image) |
|
|
|
if ocr_engine == PADDLE_OCR_LABEL: |
|
ocr_result = OCR.ocr(image_np)[0] |
|
words = [x[1][0] for x in ocr_result] |
|
boxes = np.asarray([x[0] for x in ocr_result]) |
|
|
|
for box in boxes: |
|
cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3) |
|
|
|
x1 = boxes[:, :, 0].min(1) * 1000 / image.width |
|
y1 = boxes[:, :, 1].min(1) * 1000 / image.height |
|
x2 = boxes[:, :, 0].max(1) * 1000 / image.width |
|
y2 = boxes[:, :, 1].max(1) * 1000 / image.height |
|
|
|
|
|
boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int) |
|
|
|
elif ocr_engine == TESSERACT_LABEL: |
|
words, boxes = apply_tesseract(image, None, "") |
|
|
|
for x1, y1, x2, y2 in boxes: |
|
x1 = int(x1 * image.width / 1000) |
|
y1 = int(y1 * image.height / 1000) |
|
x2 = int(x2 * image.width / 1000) |
|
y2 = int(y2 * image.height / 1000) |
|
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3) |
|
|
|
else: |
|
raise ValueError(f"Unsupported ocr_engine={ocr_engine}") |
|
|
|
token_ids = TOKENIZER(question)["input_ids"] |
|
token_boxes = [[0] * 4] * (len(token_ids) - 1) + [[1000] * 4] |
|
n_question_tokens = len(token_ids) |
|
|
|
token_ids.append(TOKENIZER.sep_token_id) |
|
token_boxes.append([1000] * 4) |
|
|
|
for word, box in zip(words, boxes): |
|
new_ids = TOKENIZER(word, add_special_tokens=False)["input_ids"] |
|
token_ids.extend(new_ids) |
|
token_boxes.extend([box] * len(new_ids)) |
|
|
|
token_ids.append(TOKENIZER.sep_token_id) |
|
token_boxes.append([1000] * 4) |
|
|
|
with torch.inference_mode(): |
|
outputs = MODEL( |
|
input_ids=torch.tensor(token_ids).unsqueeze(0), |
|
bbox=torch.tensor(token_boxes).unsqueeze(0), |
|
) |
|
|
|
start_scores = outputs.start_logits.squeeze(0).softmax(-1)[n_question_tokens:] |
|
end_scores = outputs.end_logits.squeeze(0).softmax(-1)[n_question_tokens:] |
|
|
|
span_scores = start_scores.view(-1, 1) * end_scores.view(1, -1) |
|
span_scores = torch.triu(span_scores) |
|
|
|
score, indices = span_scores.flatten().max(-1) |
|
start_idx = n_question_tokens + indices // span_scores.shape[1] |
|
end_idx = n_question_tokens + indices % span_scores.shape[1] |
|
|
|
answer = TOKENIZER.decode(token_ids[start_idx : end_idx + 1]) |
|
|
|
return answer, score, image_np |
|
|
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Image(type="pil"), |
|
"text", |
|
gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]), |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Answer"), |
|
gr.Number(label="Score"), |
|
gr.Image(label="OCR results"), |
|
], |
|
examples=[ |
|
["example_01.jpg", "When did the sample take place?", PADDLE_OCR_LABEL], |
|
["example_02.jpg", "What is the ID number?", PADDLE_OCR_LABEL], |
|
], |
|
).launch(server_name="0.0.0.0", server_port=7860) |
|
|