Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces # [uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| from PIL import Image | |
| model_ids = [ | |
| "Prgckwb/trpfrog-sd3.5-large", | |
| "Prgckwb/trpfrog-diffusion", | |
| ] | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| device = "cuda" | |
| else: | |
| torch_dtype = torch.float32 | |
| device = "cpu" | |
| pipelines = { | |
| model_id: DiffusionPipeline.from_pretrained( | |
| model_id, torch_dtype=torch_dtype | |
| ) if device == 'cuda' else None | |
| for model_id in model_ids | |
| } | |
| def inference( | |
| model_id: str, | |
| prompt: str, | |
| width: int, | |
| height: int, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if device == 'cuda': | |
| pipe = pipelines[model_id].to(device) | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| ).images[0] | |
| else: | |
| # ็ใฃ้ปใฎ็ปๅใ็ๆ | |
| image = Image.fromarray(np.random.randn(height, width, 3).astype(np.uint8)) | |
| return image | |
| def create_interface(): | |
| theme = gr.themes.Ocean() | |
| with gr.Blocks(theme=theme) as demo: | |
| with gr.Column(): | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>TrpFrog Diffusion Demo</h1>") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_model_id = gr.Dropdown(label="Model", choices=model_ids, value=model_ids[0]) | |
| input_prompt = gr.Textbox(label="Prompt", placeholder="an icon of trpfrog", value="an icon of trpfrog") | |
| with gr.Row(): | |
| input_width = gr.Slider(label="Width", minimum=64, maximum=2056, step=128, value=1024) | |
| input_height = gr.Slider(label="Height", minimum=64, maximum=2056, step=128, value=1024) | |
| with gr.Row(): | |
| clear_btn = gr.ClearButton(components=[input_prompt]) | |
| submit_btn = gr.Button('Generate', variant='primary') | |
| with gr.Column(): | |
| output_image = gr.Image(label="Output") | |
| all_inputs = [input_model_id, input_prompt, input_width, input_height] | |
| all_outputs = [output_image] | |
| examples = gr.Examples( | |
| examples=[ | |
| ['Prgckwb/trpfrog-sd3.5-large', 'an icon of trpfrog eating ramen', 1024, 1024], | |
| ['Prgckwb/trpfrog-sd3.5-large', 'an icon of trpfrog with a gun', 1024, 1024], | |
| ], | |
| inputs=all_inputs, | |
| outputs=all_outputs, | |
| fn=inference, | |
| cache_mode='eager', | |
| cache_examples=True, | |
| ) | |
| submit_btn.click(inference, inputs=all_inputs, outputs=all_outputs) | |
| input_prompt.submit(inference, inputs=all_inputs, outputs=all_outputs) | |
| return demo | |
| if __name__ == "__main__": | |
| try: | |
| demo = create_interface() | |
| demo.queue().launch() | |
| except Exception as e: | |
| raise gr.Error(e) | |