Spaces:
Sleeping
Sleeping
:tada: add negative embedding
Browse files- app.py +25 -10
- checkpoints/embeddings/BadNegAnatomyV1 neg.pt +3 -0
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import dataclasses
|
2 |
|
3 |
import gradio as gr
|
4 |
-
import requests
|
5 |
import spaces
|
6 |
import torch
|
7 |
from PIL import Image
|
@@ -25,15 +24,17 @@ EXTERNAL_MODEL_MAPPING = {
|
|
25 |
|
26 |
MODEL_CHOICES = DIFFUSERS_MODEL_IDS + list(EXTERNAL_MODEL_MAPPING.keys())
|
27 |
|
28 |
-
# Global Variables
|
29 |
current_model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
|
30 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
|
|
|
32 |
if device == 'cuda':
|
|
|
33 |
pipe = DiffusionPipeline.from_pretrained(
|
34 |
current_model_id,
|
35 |
-
torch_dtype=
|
36 |
).to(device)
|
|
|
|
|
37 |
|
38 |
|
39 |
@dataclasses.dataclass
|
@@ -61,6 +62,15 @@ EXAMPLES = [
|
|
61 |
prompt='Beautiful pixel art of a Wizard with hovering text "Achivement unlocked: Diffusion models can spell now"'
|
62 |
).to_list(),
|
63 |
Input(prompt='A corgi wearing sunglasses says "U-Net is OVER!!"').to_list(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
|
66 |
|
@@ -79,24 +89,28 @@ def inference(
|
|
79 |
) -> Image.Image:
|
80 |
progress(0, "Starting inference...")
|
81 |
|
82 |
-
if device != 'cuda':
|
83 |
-
raise gr.Error("This model requires a GPU to run. Please switch to a GPU runtime.")
|
84 |
-
|
85 |
global current_model_id, pipe
|
86 |
|
87 |
if model_id != current_model_id:
|
88 |
try:
|
|
|
89 |
if model_id not in DIFFUSERS_MODEL_IDS:
|
90 |
model_id = EXTERNAL_MODEL_MAPPING[model_id]
|
91 |
|
92 |
pipe = DiffusionPipeline.from_pretrained(
|
93 |
model_id,
|
94 |
-
torch_dtype=
|
95 |
).to(device)
|
|
|
96 |
current_model_id = model_id
|
97 |
except Exception as e:
|
98 |
raise gr.Error(str(e))
|
99 |
|
|
|
|
|
|
|
|
|
|
|
100 |
# Generation
|
101 |
images = pipe(
|
102 |
prompt,
|
@@ -141,8 +155,9 @@ if __name__ == "__main__":
|
|
141 |
num_images = gr.Number(label="Num Images", value=4, minimum=1, maximum=10, step=1)
|
142 |
|
143 |
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.5, minimum=0, maximum=10)
|
144 |
-
num_inference_step = gr.Slider(
|
145 |
-
|
|
|
146 |
|
147 |
with gr.Column():
|
148 |
output_image = gr.Image(label="Image", type="pil")
|
|
|
1 |
import dataclasses
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from PIL import Image
|
|
|
24 |
|
25 |
MODEL_CHOICES = DIFFUSERS_MODEL_IDS + list(EXTERNAL_MODEL_MAPPING.keys())
|
26 |
|
|
|
27 |
current_model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
|
|
|
28 |
|
29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
if device == 'cuda':
|
31 |
+
dtype = torch.float16
|
32 |
pipe = DiffusionPipeline.from_pretrained(
|
33 |
current_model_id,
|
34 |
+
torch_dtype=dtype,
|
35 |
).to(device)
|
36 |
+
else:
|
37 |
+
dtype = torch.float32
|
38 |
|
39 |
|
40 |
@dataclasses.dataclass
|
|
|
62 |
prompt='Beautiful pixel art of a Wizard with hovering text "Achivement unlocked: Diffusion models can spell now"'
|
63 |
).to_list(),
|
64 |
Input(prompt='A corgi wearing sunglasses says "U-Net is OVER!!"').to_list(),
|
65 |
+
Input(
|
66 |
+
prompt='Cinematic Photo of a beautiful korean fashion model bokeh train',
|
67 |
+
model_id='Beautiful Realistic Asians',
|
68 |
+
negative_prompt='(worst_quality:2.0) (MajicNegative_V2:0.8) BadNegAnatomyV1-neg bradhands cartoon, cgi, render, illustration, painting, drawing',
|
69 |
+
width=512,
|
70 |
+
height=512,
|
71 |
+
guidance_scale=5.0,
|
72 |
+
num_inference_step=50,
|
73 |
+
).to_list()
|
74 |
]
|
75 |
|
76 |
|
|
|
89 |
) -> Image.Image:
|
90 |
progress(0, "Starting inference...")
|
91 |
|
|
|
|
|
|
|
92 |
global current_model_id, pipe
|
93 |
|
94 |
if model_id != current_model_id:
|
95 |
try:
|
96 |
+
# For NOT Diffusers' Models
|
97 |
if model_id not in DIFFUSERS_MODEL_IDS:
|
98 |
model_id = EXTERNAL_MODEL_MAPPING[model_id]
|
99 |
|
100 |
pipe = DiffusionPipeline.from_pretrained(
|
101 |
model_id,
|
102 |
+
torch_dtype=dtype,
|
103 |
).to(device)
|
104 |
+
|
105 |
current_model_id = model_id
|
106 |
except Exception as e:
|
107 |
raise gr.Error(str(e))
|
108 |
|
109 |
+
# Load Textual Inversion
|
110 |
+
pipe.load_textual_inversion(
|
111 |
+
"checkpoints/embeddings/BadNegAnatomyV1 neg.pt", token='BadNegAnatomyV1-neg'
|
112 |
+
)
|
113 |
+
|
114 |
# Generation
|
115 |
images = pipe(
|
116 |
prompt,
|
|
|
155 |
num_images = gr.Number(label="Num Images", value=4, minimum=1, maximum=10, step=1)
|
156 |
|
157 |
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.5, minimum=0, maximum=10)
|
158 |
+
num_inference_step = gr.Slider(
|
159 |
+
label="Num Inference Steps", value=50, minimum=1, maximum=100, step=2
|
160 |
+
)
|
161 |
|
162 |
with gr.Column():
|
163 |
output_image = gr.Image(label="Image", type="pil")
|
checkpoints/embeddings/BadNegAnatomyV1 neg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b389c1e5f96e23612272607e980d4ddab62183b7bfecc631293ebd700ce8f96a
|
3 |
+
size 215915
|