Prgckwb's picture
:tada: add some example prompts
cf49511
raw
history blame
3.58 kB
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import DiffusionPipeline
DIFFUSERS_MODEL_IDS = [
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-2-1",
"runwayml/stable-diffusion-v1-5",
]
EXTERNAL_MODEL_URL_MAPPING = {
"Beautiful Realistic Asians": "https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=full&fp=fp16",
}
MODEL_CHOICES = DIFFUSERS_MODEL_IDS + list(EXTERNAL_MODEL_URL_MAPPING.keys())
# Global Variables
current_model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == 'cuda':
pipe = DiffusionPipeline.from_pretrained(
current_model_id,
torch_dtype=torch.float16,
).to(device)
@spaces.GPU()
@torch.inference_mode()
def inference(
model_id: str,
prompt: str,
negative_prompt: str = "",
progress=gr.Progress(track_tqdm=True),
) -> Image.Image:
progress(0, "Starting inference...")
global current_model_id, pipe
if model_id != current_model_id:
try:
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
).to(device)
current_model_id = model_id
except Exception as e:
raise gr.Error(str(e))
image = pipe(
prompt,
negative_prompt=negative_prompt,
).images[0]
return image
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown(f"# Stable Diffusion Demo")
with gr.Row():
with gr.Column():
inputs = [
gr.Dropdown(
label="Model ID",
choices=MODEL_CHOICES,
value="stabilityai/stable-diffusion-3-medium-diffusers",
),
gr.Text(label="Prompt", value=""),
gr.Text(label="Negative Prompt", value=""),
]
with gr.Accordion("Additional Settings (W.I.P)", open=False):
with gr.Row():
width_component = gr.Number(label="Width", value=512, step=64, minimum=64, maximum=1024)
height_component = gr.Number(label="Height", value=512, step=64, minimum=64, maximum=1024)
additional_inputs = [
width_component,
height_component,
gr.Number(label="Guidance Scale", value=7.5, step=0.5, minimum=0, maximum=10),
gr.Slider(label="Num Inference Steps", value=None, minimum=1, maximum=1000, step=1)
]
with gr.Column():
outputs = [
gr.Image(label="Image", type="pil"),
]
gr.Examples(
examples=[
['stabilityai/stable-diffusion-3-medium-diffusers', 'A cat holding a sign that says Hello world', ""],
['stabilityai/stable-diffusion-3-medium-diffusers', 'Beautiful pixel art of a Wizard with hovering text "Achivement unlocked: Diffusion models can spell now"', ''],
['stabilityai/stable-diffusion-3-medium-diffusers', 'A corgi wearing sunglasses says "U-Net is OVER!!"', ''],
],
inputs=inputs,
)
btn = gr.Button("Generate")
btn.click(fn=inference, inputs=inputs, outputs=outputs)
demo.queue().launch()