resume_analysis / app.py
Prernas19's picture
Update app.py
abe4ae0 verified
raw
history blame
7.25 kB
import os
import re
import fitz # Importing PyMuPDF for PDF text extraction
import nltk
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import gradio as gr
# Download NLTK data files
nltk.download('punkt')
nltk.download('stopwords')
# Function to preprocess text
def preprocess_text(text):
text = re.sub(r'\W+', ' ', text.lower()) # Remove non-alphanumeric characters and lower case
return text
# Function to extract keywords using TF-IDF
def extract_keywords_tfidf(text, max_features=50):
vectorizer = TfidfVectorizer(stop_words='english', max_features=max_features)
tfidf_matrix = vectorizer.fit_transform([text])
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = tfidf_matrix.toarray().flatten()
keyword_scores = sorted(zip(tfidf_scores, feature_names), reverse=True)
return [keyword for score, keyword in keyword_scores]
# Function to extract text from a PDF
def extract_text_from_pdf(pdf_path):
document = fitz.open(pdf_path)
text = ""
for page_num in range(len(document)):
page = document.load_page(page_num)
text += page.get_text()
return text
# Function to give feedback on resume
def give_feedback(resume_text, job_description):
feedback = []
# Check formatting (example: consistency in bullet points)
if '•' in resume_text and '-' in resume_text:
feedback.append("Consider using a consistent bullet point style throughout your resume.")
# Check for grammar and spelling
if not any(re.findall(r'\bexperience\b|\beducation\b|\bskills\b', resume_text.lower())):
feedback.append("Make sure your resume includes sections like Experience, Education, and Skills.")
# Extract keywords and check relevance
jd_keywords = extract_keywords_tfidf(preprocess_text(job_description))
resume_keywords = extract_keywords_tfidf(preprocess_text(resume_text))
common_keywords = set(jd_keywords).intersection(set(resume_keywords))
if len(common_keywords) < 8:
feedback.append(f"Your resume could better match the job description. Consider adding keywords such as: {', '.join(jd_keywords[:5])}.")
# Check for action verbs
action_verbs = ["managed", "led", "developed", "designed", "implemented", "created"]
if not any(verb in resume_text.lower() for verb in action_verbs):
feedback.append("Consider using strong action verbs to describe your achievements and responsibilities.")
if not re.search(r'\bsummary\b|\bobjective\b', resume_text, re.IGNORECASE):
feedback.append("Consider adding a professional summary or objective statement to provide a quick overview of your qualifications.")
# Check for quantifiable achievements
if not re.findall(r'\d+', resume_text):
feedback.append("Include quantifiable achievements in your experience section (e.g., increased sales by 20%).")
# Provide positive feedback if none of the above conditions are met
if not feedback:
feedback.append("Your resume is well-aligned with the job description. Ensure to keep it updated with relevant keywords and achievements.")
return feedback
# Function to calculate TF-IDF cosine similarity score
def tfidf_cosine_similarity(resume, jd):
documents = [resume, jd]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(documents)
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
return cosine_sim[0][0]
# Function to calculate Doc2Vec cosine similarity score
def doc2vec_cosine_similarity(resume, jd, model):
resume_vector = model.infer_vector(resume.split())
jd_vector = model.infer_vector(jd.split())
cosine_sim = cosine_similarity([resume_vector], [jd_vector])
return cosine_sim[0][0]
# Function to extract years of experience from resume
def extract_years_of_experience(text):
years = re.findall(r'(\d+)\s+year[s]*', text, re.IGNORECASE)
if years:
return sum(map(int, years))
return 0
# Function to extract information from resumes in a folder
def extract_info_from_resumes(resume_files, job_description):
data = []
# Train Doc2Vec model on resumes and job description
documents = []
for file in resume_files:
text = extract_text_from_pdf(file.name)
documents.append(preprocess_text(text))
documents.append(preprocess_text(job_description))
tagged_docs = [TaggedDocument(doc.split(), [i]) for i, doc in enumerate(documents)]
model = Doc2Vec(tagged_docs, vector_size=50, window=2, min_count=1, workers=4)
for file in resume_files:
text = extract_text_from_pdf(file.name)
preprocessed_text = preprocess_text(text)
resume_keywords = extract_keywords_tfidf(preprocessed_text)
years_of_experience = extract_years_of_experience(text)
# Append years of experience to the resume keywords
if years_of_experience > 0:
resume_keywords.append(f"{years_of_experience} years experience")
name = os.path.splitext(os.path.basename(file.name))[0]
feedback = give_feedback(text, job_description)
# Calculate scores
jd_keywords = extract_keywords_tfidf(preprocess_text(job_description))
common_keywords = set(jd_keywords).intersection(set(resume_keywords))
keyword_match_score = len(common_keywords) # Count of common keywords as a whole number
tfidf_score = tfidf_cosine_similarity(text, job_description)
doc2vec_score = doc2vec_cosine_similarity(preprocessed_text, preprocess_text(job_description), model)
data.append({
'Name': name,
'Keyword_Match_Score': keyword_match_score, # Whole number
'TFIDF_Score': tfidf_score,
'Doc2Vec_Score': doc2vec_score,
'Years_of_Experience': years_of_experience,
'Feedback': '; '.join(feedback), # Combine feedback into a single string
})
return data
# Function to save data to an Excel file
def save_to_excel(data, output_file):
df = pd.DataFrame(data)
try:
df.to_excel(output_file, index=False)
return output_file
except Exception as e:
return f"Error saving file: {e}"
# Gradio interface function
def gradio_interface(resume_files, job_description):
if resume_files:
output_file = '/content/Resume_Analysis.xlsx'
resumes = extract_info_from_resumes(resume_files, job_description)
result = save_to_excel(resumes, output_file)
else:
result = "No resumes to process."
return result
# Gradio UI setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Files(label="Upload multiple Resumes", type="filepath"), # Accept multiple file uploads
gr.Textbox(label="Job Description", lines=5, placeholder="Enter the job description here...")
],
outputs=gr.File(label="Download Results"), # Provide the output file
description="Upload multiple resume PDFs and provide a job description to analyze the resumes and get an Excel file with the results."
)
# Launch the Gradio interface
iface.launch()