Praveen998 commited on
Commit
3878a2a
·
1 Parent(s): 5c3a07c

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +14 -77
app.py CHANGED
@@ -26,89 +26,26 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" US Real Estate Data and Market Trends")
 
 
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
 
36
  with col2:
37
- option = st.selectbox(" Current / Historical", [" Current ", " Historical"])
38
- (
39
- col1,
40
- col2,
41
- ) = st.columns(2)
42
- with col1:
43
- option = st.selectbox(" Median / Mean", [" Median ", " Mean"])
44
- with col2:
45
- option = st.selectbox(" San Francisco", [" San Francisco"])
46
- (
47
- col1,
48
- col2,
49
- ) = st.columns(2)
50
- with col1:
51
- selected_color = st.color_picker(" Choose a palate", "#FF0000")
52
- with col2:
53
- value = st.slider(" No of colors", min_value=0, max_value=100, value=50, key=5)
54
- if st.checkbox(" Show raw data"):
55
- st.write("Checkbox checked!")
56
- st.subheader(" Global 3D Visualization")
57
- st.pydeck_chart(
58
- pdk.Deck(
59
- map_style=None,
60
- initial_view_state=pdk.ViewState(
61
- latitude=37.76, longitude=-122.4, zoom=11, pitch=50
62
- ),
63
- layers=[
64
- pdk.Layer(
65
- "HexagonLayer",
66
- data=pd.DataFrame(
67
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
68
- columns=["lat", "lon"],
69
- ),
70
- get_position="[lon, lat]",
71
- radius=200,
72
- elevation_scale=4,
73
- elevation_range=[0, 1000],
74
- pickable=True,
75
- extruded=True,
76
- ),
77
- pdk.Layer(
78
- "ScatterplotLayer",
79
- data=pd.DataFrame(
80
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
81
- columns=["lat", "lon"],
82
- ),
83
- get_position="[lon, lat]",
84
- get_color="[200, 30, 0, 160]",
85
- get_radius=200,
86
- ),
87
- ],
88
- )
89
- )
90
- st.subheader(" 2D Visualization")
91
- st.altair_chart(
92
- alt.Chart(
93
- pd.DataFrame(
94
- {
95
- "x": np.random.rand(50),
96
- "y": np.random.rand(50),
97
- "size": np.random.randint(10, 100, 50),
98
- "color": np.random.rand(50),
99
- }
100
- )
101
- )
102
- .mark_circle()
103
- .encode(
104
- x="x",
105
- y="y",
106
- size="size",
107
- color="color",
108
- tooltip=["x", "y", "size", "color"],
109
- )
110
- .properties(width=600, height=400),
111
- use_container_width=True,
112
  )
113
 
114
 
 
26
 
27
 
28
  def main():
29
+ st.title(" Image Prediction (Computer Vision)")
30
+ option = st.selectbox(" ImageNet / CoCo", [" ImageNet ", " CoCo"])
31
+ value = st.slider(" Threshold", min_value=0, max_value=100, value=50, key=57)
32
  (
33
  col1,
34
  col2,
35
  ) = st.columns(2)
36
  with col1:
37
+ if st.checkbox(" Remove Noise"):
38
+ st.write("Checkbox checked!")
39
  with col2:
40
+ if st.checkbox(" Increase Resolution"):
41
+ st.write("Checkbox checked!")
42
+ uploaded_file = st.file_uploader("Choose a file", type=["jpg", "png", "mp3"])
43
+ if st.button(" Predict"):
44
+ st.write("Button clicked!")
45
+ st.subheader(" Original vs Predicted")
46
+ image_comparison(
47
+ img1="https://www.imgonline.com.ua/examples/red-yellow-flower.jpg",
48
+ img2="https://lettatai.sirv.com/imgonline-com-ua-Negative-lYz1br1SWE.jpg",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  )
50
 
51