Spaces:
Sleeping
Sleeping
Prathmesh48
commited on
Commit
•
9ba9756
1
Parent(s):
9de950b
Upload 8 files
Browse files- api_fast.py +226 -0
- app.py +402 -326
- embedding.py +425 -370
- github_storage.py +77 -0
- preprocess.py +2 -3
- requirements.txt +32 -28
- tokenizer.json +0 -0
api_fast.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from googlesearch import search
|
7 |
+
from duckduckgo_search import DDGS
|
8 |
+
import concurrent.futures
|
9 |
+
import re
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
API_KEY_DEFAULT = '12345'
|
14 |
+
|
15 |
+
class SearchRequest(BaseModel):
|
16 |
+
API_KEY: str
|
17 |
+
product: str
|
18 |
+
|
19 |
+
# Function to search DuckDuckGo
|
20 |
+
def duckduckgo_search(query):
|
21 |
+
try:
|
22 |
+
results = DDGS().text(f"{query} manual filetype:pdf", max_results=5)
|
23 |
+
return [res['href'] for res in results]
|
24 |
+
except:
|
25 |
+
return []
|
26 |
+
|
27 |
+
# Function to search Google
|
28 |
+
def google_search(query):
|
29 |
+
links = []
|
30 |
+
try:
|
31 |
+
api_key = 'AIzaSyDV_uJwrgNtawqtl6GDfeUj6NqO-H1tA4c'
|
32 |
+
search_engine_id = 'c4ca951b9fc6949cb'
|
33 |
+
|
34 |
+
url = f"https://www.googleapis.com/customsearch/v1"
|
35 |
+
params = {
|
36 |
+
"key": api_key,
|
37 |
+
"cx": search_engine_id,
|
38 |
+
"q": query + " manual filetype:pdf"
|
39 |
+
}
|
40 |
+
|
41 |
+
response = requests.get(url, params=params)
|
42 |
+
results = response.json()
|
43 |
+
|
44 |
+
for item in results.get('items', []):
|
45 |
+
links.append(item['link'])
|
46 |
+
except:
|
47 |
+
pass
|
48 |
+
|
49 |
+
try:
|
50 |
+
extension = "ext:pdf"
|
51 |
+
for result in search(query + " manual " + extension, num_results=5):
|
52 |
+
if result.endswith('.pdf'):
|
53 |
+
links.append(result)
|
54 |
+
except:
|
55 |
+
pass
|
56 |
+
|
57 |
+
return links
|
58 |
+
|
59 |
+
# Function to search Internet Archive
|
60 |
+
def archive_search(query):
|
61 |
+
try:
|
62 |
+
url = "https://archive.org/advancedsearch.php"
|
63 |
+
params = {
|
64 |
+
'q': f'{query} manual',
|
65 |
+
'fl[]': ['identifier', 'title', 'format'],
|
66 |
+
'rows': 50,
|
67 |
+
'page': 1,
|
68 |
+
'output': 'json'
|
69 |
+
}
|
70 |
+
|
71 |
+
response = requests.get(url, params=params)
|
72 |
+
data = response.json()
|
73 |
+
|
74 |
+
def extract_hyperlinks(url):
|
75 |
+
response = requests.get(url)
|
76 |
+
if response.status_code == 200:
|
77 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
78 |
+
for link in soup.find_all('a', href=True):
|
79 |
+
href = link['href']
|
80 |
+
if href.endswith('.pdf'):
|
81 |
+
pdf_files.append(url + '/' + href)
|
82 |
+
if href.endswith('.iso'):
|
83 |
+
extract_pdf_from_iso(url + '/' + href + '/')
|
84 |
+
|
85 |
+
def extract_pdf_from_iso(iso_url):
|
86 |
+
iso_response = requests.get(iso_url)
|
87 |
+
if iso_response.status_code == 200:
|
88 |
+
iso_soup = BeautifulSoup(iso_response.text, 'html.parser')
|
89 |
+
for link in iso_soup.find_all('a', href=True):
|
90 |
+
href = link['href']
|
91 |
+
if href.endswith('.pdf'):
|
92 |
+
pdf_files.append('https:' + href)
|
93 |
+
|
94 |
+
pdf_files = []
|
95 |
+
|
96 |
+
def process_doc(doc):
|
97 |
+
identifier = doc.get('identifier', 'N/A')
|
98 |
+
pdf_link = f"https://archive.org/download/{identifier}"
|
99 |
+
extract_hyperlinks(pdf_link)
|
100 |
+
|
101 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
102 |
+
futures = [executor.submit(process_doc, doc) for doc in data['response']['docs']]
|
103 |
+
for future in concurrent.futures.as_completed(futures):
|
104 |
+
try:
|
105 |
+
future.result()
|
106 |
+
except Exception as exc:
|
107 |
+
print(f'Generated an exception: {exc}')
|
108 |
+
|
109 |
+
return pdf_files
|
110 |
+
|
111 |
+
except:
|
112 |
+
return []
|
113 |
+
|
114 |
+
def github_search(query):
|
115 |
+
try:
|
116 |
+
url = f"https://api.github.com/search/code?q={query}+extension:md"
|
117 |
+
headers = {
|
118 |
+
'Authorization': 'Token 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'
|
119 |
+
}
|
120 |
+
response = requests.get(url, headers=headers)
|
121 |
+
data = response.json()
|
122 |
+
links = [item['html_url'].replace('/blob','').replace('//github','//raw.github') for item in data['items']]
|
123 |
+
return links
|
124 |
+
|
125 |
+
except:
|
126 |
+
return []
|
127 |
+
|
128 |
+
def extract_similar_products(query):
|
129 |
+
results = DDGS().chat(f'{query} Similar Products')
|
130 |
+
pattern = r'^\d+\.\s(.+)$'
|
131 |
+
matches = re.findall(pattern, results, re.MULTILINE)
|
132 |
+
matches = [item.split(': ')[0] for item in matches]
|
133 |
+
return matches[:5] if matches else []
|
134 |
+
|
135 |
+
@app.get('/')
|
136 |
+
def read_root():
|
137 |
+
return {"message": "Welcome to the search API"}
|
138 |
+
|
139 |
+
@app.post('/search/google')
|
140 |
+
async def search_google(request: SearchRequest):
|
141 |
+
if request.API_KEY == API_KEY_DEFAULT:
|
142 |
+
results = {request.product: google_search(request.product)}
|
143 |
+
similar_products = extract_similar_products(request.product)
|
144 |
+
for p in similar_products:
|
145 |
+
results[p] = google_search(p)
|
146 |
+
return results
|
147 |
+
else:
|
148 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
149 |
+
|
150 |
+
@app.post('/search/duckduckgo')
|
151 |
+
async def search_duckduckgo(request: SearchRequest):
|
152 |
+
if request.API_KEY == API_KEY_DEFAULT:
|
153 |
+
results = {request.product: duckduckgo_search(request.product)}
|
154 |
+
similar_products = extract_similar_products(request.product)
|
155 |
+
for p in similar_products:
|
156 |
+
results[p] = duckduckgo_search(p)
|
157 |
+
return results
|
158 |
+
else:
|
159 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
160 |
+
|
161 |
+
@app.post('/search/archive')
|
162 |
+
async def search_archive(request: SearchRequest):
|
163 |
+
if request.API_KEY == API_KEY_DEFAULT:
|
164 |
+
results = {request.product: archive_search(request.product)}
|
165 |
+
similar_products = extract_similar_products(request.product)
|
166 |
+
|
167 |
+
def process_product(product):
|
168 |
+
return product, archive_search(product)
|
169 |
+
|
170 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
171 |
+
future_to_product = {executor.submit(process_product, p): p for p in similar_products}
|
172 |
+
for future in concurrent.futures.as_completed(future_to_product):
|
173 |
+
product, result = future.result()
|
174 |
+
results[product] = result
|
175 |
+
|
176 |
+
return results
|
177 |
+
else:
|
178 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
179 |
+
|
180 |
+
@app.post('/search/github')
|
181 |
+
async def search_github(request: SearchRequest):
|
182 |
+
if request.API_KEY == API_KEY_DEFAULT:
|
183 |
+
results = {request.product: github_search(request.product)}
|
184 |
+
similar_products = extract_similar_products(request.product)
|
185 |
+
for p in similar_products:
|
186 |
+
results[p] = github_search(p)
|
187 |
+
return results
|
188 |
+
else:
|
189 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
190 |
+
|
191 |
+
@app.post('/search/all')
|
192 |
+
async def search_all(request: SearchRequest):
|
193 |
+
if request.API_KEY == API_KEY_DEFAULT:
|
194 |
+
results = {
|
195 |
+
request.product: [
|
196 |
+
{'duckduckgo': duckduckgo_search(request.product)},
|
197 |
+
{'google': google_search(request.product)},
|
198 |
+
{'github': github_search(request.product)},
|
199 |
+
{'archive': archive_search(request.product)}
|
200 |
+
]
|
201 |
+
}
|
202 |
+
|
203 |
+
def search_product(p):
|
204 |
+
return {
|
205 |
+
'product': p,
|
206 |
+
'duckduckgo': duckduckgo_search(p),
|
207 |
+
'google': google_search(p),
|
208 |
+
'github': github_search(p),
|
209 |
+
'archive': archive_search(p)
|
210 |
+
}
|
211 |
+
|
212 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
213 |
+
future_to_product = {executor.submit(search_product, p): p for p in extract_similar_products(request.product)}
|
214 |
+
for future in concurrent.futures.as_completed(future_to_product):
|
215 |
+
result = future.result()
|
216 |
+
product = result['product']
|
217 |
+
results[product] = [
|
218 |
+
{'duckduckgo': result['duckduckgo']},
|
219 |
+
{'google': result['google']},
|
220 |
+
{'github': result['github']},
|
221 |
+
{'archive': result['archive']}
|
222 |
+
]
|
223 |
+
|
224 |
+
return results
|
225 |
+
else:
|
226 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
app.py
CHANGED
@@ -1,326 +1,402 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import concurrent.futures
|
3 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
-
from functools import partial
|
5 |
-
import numpy as np
|
6 |
-
from io import StringIO
|
7 |
-
import sys
|
8 |
-
import time
|
9 |
-
import pandas as pd
|
10 |
-
from pymongo import MongoClient
|
11 |
-
import plotly.express as px
|
12 |
-
from pinecone import Pinecone, ServerlessSpec
|
13 |
-
import chromadb
|
14 |
-
import requests
|
15 |
-
from io import BytesIO
|
16 |
-
from PyPDF2 import PdfReader
|
17 |
-
import hashlib
|
18 |
-
import os
|
19 |
-
import
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
except
|
70 |
-
print(f'
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
unique_key
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
magnitude_vec2
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import concurrent.futures
|
3 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
+
from functools import partial
|
5 |
+
import numpy as np
|
6 |
+
from io import StringIO
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import pandas as pd
|
10 |
+
from pymongo import MongoClient
|
11 |
+
import plotly.express as px
|
12 |
+
from pinecone import Pinecone, ServerlessSpec
|
13 |
+
import chromadb
|
14 |
+
import requests
|
15 |
+
from io import BytesIO
|
16 |
+
from PyPDF2 import PdfReader
|
17 |
+
import hashlib
|
18 |
+
import os
|
19 |
+
from plotly.subplots import make_subplots
|
20 |
+
import plotly.graph_objects as go
|
21 |
+
from PIL import Image
|
22 |
+
import shutil
|
23 |
+
|
24 |
+
|
25 |
+
# File Imports
|
26 |
+
from embedding import get_embeddings, get_image_embeddings, get_embed_chroma,imporve_text # Ensure this file/module is available
|
27 |
+
from preprocess import filtering # Ensure this file/module is available
|
28 |
+
from github_storage import update_db,download_db
|
29 |
+
from search import *
|
30 |
+
|
31 |
+
|
32 |
+
# Chroma Connections
|
33 |
+
try:
|
34 |
+
client = chromadb.PersistentClient(path="embeddings")
|
35 |
+
collection = client.get_or_create_collection(name="data", metadata={"hnsw:space": "l2"})
|
36 |
+
except:
|
37 |
+
pass
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def generate_hash(content):
|
42 |
+
return hashlib.sha256(content.encode('utf-8')).hexdigest()
|
43 |
+
|
44 |
+
|
45 |
+
def get_key(link):
|
46 |
+
text = ''
|
47 |
+
try:
|
48 |
+
# Fetch the PDF file from the URL
|
49 |
+
response = requests.get(link)
|
50 |
+
response.raise_for_status() # Raise an error for bad status codes
|
51 |
+
|
52 |
+
# Use BytesIO to handle the PDF content in memory
|
53 |
+
pdf_file = BytesIO(response.content)
|
54 |
+
|
55 |
+
# Load the PDF file
|
56 |
+
reader = PdfReader(pdf_file)
|
57 |
+
num_pages = len(reader.pages)
|
58 |
+
|
59 |
+
first_page_text = reader.pages[0].extract_text()
|
60 |
+
if first_page_text:
|
61 |
+
text += first_page_text
|
62 |
+
|
63 |
+
last_page_text = reader.pages[-1].extract_text()
|
64 |
+
if last_page_text:
|
65 |
+
text += last_page_text
|
66 |
+
|
67 |
+
except requests.exceptions.HTTPError as e:
|
68 |
+
print(f'HTTP error occurred: {e}')
|
69 |
+
except Exception as e:
|
70 |
+
print(f'An error occurred: {e}')
|
71 |
+
|
72 |
+
unique_key = generate_hash(text)
|
73 |
+
|
74 |
+
return unique_key
|
75 |
+
|
76 |
+
|
77 |
+
# Cosine Similarity Function
|
78 |
+
def cosine_similarity(vec1, vec2):
|
79 |
+
vec1 = np.array(vec1)
|
80 |
+
vec2 = np.array(vec2)
|
81 |
+
|
82 |
+
dot_product = np.dot(vec1, vec2.T)
|
83 |
+
magnitude_vec1 = np.linalg.norm(vec1)
|
84 |
+
magnitude_vec2 = np.linalg.norm(vec2)
|
85 |
+
|
86 |
+
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
87 |
+
return 0.0
|
88 |
+
|
89 |
+
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
90 |
+
return cosine_sim
|
91 |
+
|
92 |
+
|
93 |
+
def update_chroma(product_name, url, key, text, vector, log_area):
|
94 |
+
if len(text) > 0:
|
95 |
+
id_list = [key + str(i) for i in range(len(text))]
|
96 |
+
|
97 |
+
metadata_list = [
|
98 |
+
{'key': key,
|
99 |
+
'product_name': product_name,
|
100 |
+
'url': url,
|
101 |
+
'text': item
|
102 |
+
}
|
103 |
+
for item in text
|
104 |
+
]
|
105 |
+
|
106 |
+
collection.upsert(
|
107 |
+
ids=id_list,
|
108 |
+
embeddings=vector,
|
109 |
+
metadatas=metadata_list
|
110 |
+
)
|
111 |
+
|
112 |
+
logger.write(f"\n\u2713 Updated DB - {url}\n\n")
|
113 |
+
log_area.text(logger.getvalue())
|
114 |
+
|
115 |
+
return True
|
116 |
+
|
117 |
+
return False
|
118 |
+
|
119 |
+
|
120 |
+
# Logger class to capture output
|
121 |
+
class StreamCapture:
|
122 |
+
def __init__(self):
|
123 |
+
self.output = StringIO()
|
124 |
+
self._stdout = sys.stdout
|
125 |
+
|
126 |
+
def __enter__(self):
|
127 |
+
sys.stdout = self.output
|
128 |
+
return self.output
|
129 |
+
|
130 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
131 |
+
sys.stdout = self._stdout
|
132 |
+
|
133 |
+
|
134 |
+
# Main Function
|
135 |
+
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
136 |
+
data = {}
|
137 |
+
similar_products = extract_similar_products(main_product)[:product_count]
|
138 |
+
|
139 |
+
if len(similar_products) < 1:
|
140 |
+
st.warning(f'No Simililar Products Found for {main_product}. Please Be More Specific With Product Name')
|
141 |
+
|
142 |
+
|
143 |
+
print("--> Fetching Manual Links")
|
144 |
+
# Normal Filtering + Embedding -----------------------------------------------
|
145 |
+
if search == 'All':
|
146 |
+
|
147 |
+
def process_product(product, search_function, main_product):
|
148 |
+
search_result = search_function(product)
|
149 |
+
return filtering(search_result, main_product, product, link_count)
|
150 |
+
|
151 |
+
search_functions = {
|
152 |
+
'google': search_google,
|
153 |
+
'duckduckgo': search_duckduckgo,
|
154 |
+
'github': search_github,
|
155 |
+
'wikipedia': search_wikipedia
|
156 |
+
}
|
157 |
+
|
158 |
+
with ThreadPoolExecutor() as executor:
|
159 |
+
future_to_product_search = {
|
160 |
+
executor.submit(process_product, product, search_function, main_product): (product, search_name)
|
161 |
+
for product in similar_products
|
162 |
+
for search_name, search_function in search_functions.items()
|
163 |
+
}
|
164 |
+
|
165 |
+
for future in as_completed(future_to_product_search):
|
166 |
+
product, search_name = future_to_product_search[future]
|
167 |
+
try:
|
168 |
+
if product not in data:
|
169 |
+
data[product] = {}
|
170 |
+
data[product] = future.result()
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error processing product {product} with {search_name}: {e}")
|
173 |
+
|
174 |
+
else:
|
175 |
+
|
176 |
+
for product in similar_products:
|
177 |
+
|
178 |
+
if search == 'google':
|
179 |
+
data[product] = filtering(search_google(product), main_product, product, link_count)
|
180 |
+
elif search == 'duckduckgo':
|
181 |
+
data[product] = filtering(search_duckduckgo(product), main_product, product, link_count)
|
182 |
+
elif search == 'archive':
|
183 |
+
data[product] = filtering(search_archive(product), main_product, product, link_count)
|
184 |
+
elif search == 'github':
|
185 |
+
data[product] = filtering(search_github(product), main_product, product, link_count)
|
186 |
+
elif search == 'wikipedia':
|
187 |
+
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
188 |
+
|
189 |
+
# Filtered Link -----------------------------------------
|
190 |
+
logger.write("\n\n\u2713 Filtered Links\n")
|
191 |
+
log_area.text(logger.getvalue())
|
192 |
+
|
193 |
+
# Main product Embeddings ---------------------------------
|
194 |
+
logger.write("\n\n--> Creating Main product Embeddings\n")
|
195 |
+
|
196 |
+
main_key = get_key(main_url)
|
197 |
+
main_text, main_vector = get_embed_chroma(main_url)
|
198 |
+
|
199 |
+
readable = update_chroma(main_product, main_url, main_key, main_text, main_vector, log_area)
|
200 |
+
|
201 |
+
if readable:
|
202 |
+
# log_area.text(logger.getvalue())
|
203 |
+
print("\n\n\u2713 Main Product embeddings Created")
|
204 |
+
|
205 |
+
logger.write("\n\n--> Creating Similar product Embeddings\n")
|
206 |
+
log_area.text(logger.getvalue())
|
207 |
+
test_embedding = [0] * 768
|
208 |
+
|
209 |
+
for product in data:
|
210 |
+
for link in data[product]:
|
211 |
+
|
212 |
+
url, _ = link
|
213 |
+
similar_key = get_key(url)
|
214 |
+
|
215 |
+
res = collection.query(
|
216 |
+
query_embeddings=[test_embedding],
|
217 |
+
n_results=1,
|
218 |
+
where={"key": similar_key},
|
219 |
+
)
|
220 |
+
|
221 |
+
if not res['distances'][0]:
|
222 |
+
similar_text, similar_vector = get_embed_chroma(url)
|
223 |
+
update_chroma(product, url, similar_key, similar_text, similar_vector, log_area)
|
224 |
+
|
225 |
+
logger.write("\n\n\u2713 Similar Product embeddings Created\n")
|
226 |
+
log_area.text(logger.getvalue())
|
227 |
+
|
228 |
+
top_similar = []
|
229 |
+
|
230 |
+
for idx, chunk in enumerate(main_vector):
|
231 |
+
res = collection.query(
|
232 |
+
query_embeddings=[chunk],
|
233 |
+
n_results=1,
|
234 |
+
where={"key": {'$ne': main_key}},
|
235 |
+
include=['metadatas', 'embeddings', 'distances']
|
236 |
+
)
|
237 |
+
|
238 |
+
top_similar.append((main_text[idx], chunk, res, res['distances'][0]))
|
239 |
+
|
240 |
+
most_similar_items = sorted(top_similar, key=lambda x: x[3])[:top_similar_count]
|
241 |
+
|
242 |
+
logger.write("--------------- DONE -----------------\n")
|
243 |
+
log_area.text(logger.getvalue())
|
244 |
+
|
245 |
+
return most_similar_items
|
246 |
+
|
247 |
+
return []
|
248 |
+
|
249 |
+
|
250 |
+
# Streamlit Interface
|
251 |
+
|
252 |
+
st.title("🔍 Infringement Checker")
|
253 |
+
|
254 |
+
# Inputs
|
255 |
+
with st.sidebar:
|
256 |
+
st.header("📋 Product Information")
|
257 |
+
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
258 |
+
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
259 |
+
|
260 |
+
st.header("🔎 Search Settings")
|
261 |
+
search_method = st.selectbox('Choose Search Engine', ['All', 'duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
|
262 |
+
|
263 |
+
product_count = st.number_input("Number of Similar Products", min_value=1, step=1, format="%i")
|
264 |
+
link_count = st.number_input("Number of Links per Product", min_value=1, step=1, format="%i")
|
265 |
+
need_image = st.selectbox("Process Images", ['True', 'False'])
|
266 |
+
|
267 |
+
top_similar_count = st.number_input("Top Similarities to be Displayed", value=3, min_value=1, step=1, format="%i")
|
268 |
+
|
269 |
+
|
270 |
+
col1_main,col2_main = st.columns([7,3])
|
271 |
+
|
272 |
+
with col1_main:
|
273 |
+
run_streamlit = st.button('Check for Infringement')
|
274 |
+
|
275 |
+
|
276 |
+
if run_streamlit:
|
277 |
+
global log_output
|
278 |
+
|
279 |
+
tab1, tab2 = st.tabs(["📊 Output", "🖥️ Console"])
|
280 |
+
|
281 |
+
with tab2:
|
282 |
+
log_output = st.empty()
|
283 |
+
|
284 |
+
with tab1:
|
285 |
+
with st.spinner('Processing...'):
|
286 |
+
|
287 |
+
if len(os.listdir('/home/user/app/embeddings'))<2:
|
288 |
+
download_db()
|
289 |
+
print("\u2713 Downloaded Database\n\n")
|
290 |
+
|
291 |
+
with StreamCapture() as logger:
|
292 |
+
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
293 |
+
|
294 |
+
st.success('✅ Processing complete!')
|
295 |
+
|
296 |
+
st.subheader("📈 Cosine Similarity Scores")
|
297 |
+
|
298 |
+
if len(top_similar_values) > 0:
|
299 |
+
|
300 |
+
for main_text, main_vector, response, _ in top_similar_values:
|
301 |
+
product_name = response['metadatas'][0][0]['product_name']
|
302 |
+
link = response['metadatas'][0][0]['url']
|
303 |
+
similar_text = response['metadatas'][0][0]['text']
|
304 |
+
# similar_text_refined = imporve_text(similar_text)
|
305 |
+
# main_text_refined = imporve_text(main_text)
|
306 |
+
|
307 |
+
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
308 |
+
|
309 |
+
# Display the product information
|
310 |
+
with st.expander(f"### Product: {product_name} - Score: {cosine_score:.4f}"):
|
311 |
+
link = link.replace(" ","%20")
|
312 |
+
st.markdown(f"[View Product Manual]({link})")
|
313 |
+
tab1, tab2 = st.tabs(["Raw Text", "Refined Text"])
|
314 |
+
with tab2:
|
315 |
+
col1, col2 = st.columns(2)
|
316 |
+
with col1:
|
317 |
+
st.markdown(f"*Main Text:\n* {imporve_text(main_text)}")
|
318 |
+
with col2:
|
319 |
+
st.markdown(f"*Similar Text\n:* {imporve_text(similar_text)}")
|
320 |
+
|
321 |
+
with tab1:
|
322 |
+
col1, col2 = st.columns(2)
|
323 |
+
with col1:
|
324 |
+
st.markdown(f"*Main Text:* {main_text}")
|
325 |
+
with col2:
|
326 |
+
st.markdown(f"*Similar Text:* {similar_text}")
|
327 |
+
|
328 |
+
else:
|
329 |
+
st.warning("Main Product Document isn't Readable!")
|
330 |
+
|
331 |
+
if need_image == 'True':
|
332 |
+
with st.spinner('Processing Images...'):
|
333 |
+
emb_main , main_prod_imgs = get_image_embeddings(main_product)
|
334 |
+
similar_prod = extract_similar_products(main_product)[0]
|
335 |
+
emb_similar , similar_prod_imgs = get_image_embeddings(similar_prod)
|
336 |
+
if similar_prod:
|
337 |
+
similarity_matrix = np.zeros((5, 5))
|
338 |
+
for i in range(5):
|
339 |
+
for j in range(5):
|
340 |
+
similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0]
|
341 |
+
|
342 |
+
st.subheader("Image Similarity")
|
343 |
+
# Create an interactive heatmap
|
344 |
+
fig = px.imshow(similarity_matrix,
|
345 |
+
labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"),
|
346 |
+
x=[f"Image {i+1}" for i in range(5)],
|
347 |
+
y=[f"Image {i+1}" for i in range(5)],
|
348 |
+
color_continuous_scale="Viridis")
|
349 |
+
|
350 |
+
# Add title to the heatmap
|
351 |
+
fig.update_layout(title="Image Similarity Heatmap")
|
352 |
+
|
353 |
+
# Display the interactive heatmap
|
354 |
+
st.plotly_chart(fig)
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
@st.experimental_fragment
|
359 |
+
def image_viewer():
|
360 |
+
# Form to handle image selection
|
361 |
+
|
362 |
+
st.subheader("Image Viewer")
|
363 |
+
|
364 |
+
selected_row = st.selectbox('Select a row (Main Product Image)', [f'Image {i+1}' for i in range(5)])
|
365 |
+
selected_col = st.selectbox('Select a column (Similar Product Image)', [f'Image {i+1}' for i in range(5)])
|
366 |
+
|
367 |
+
# Get the selected indices from session state
|
368 |
+
row_idx = int(selected_row.split()[1]) - 1
|
369 |
+
col_idx = int(selected_col.split()[1]) - 1
|
370 |
+
|
371 |
+
col1, col2 = st.columns(2)
|
372 |
+
|
373 |
+
with col1:
|
374 |
+
st.image(main_prod_imgs[row_idx], caption=f'Main Product Image {row_idx+1}', use_column_width=True)
|
375 |
+
with col2:
|
376 |
+
st.image(similar_prod_imgs[col_idx], caption=f'Similar Product Image {col_idx+1}', use_column_width=True)
|
377 |
+
|
378 |
+
# Call the fragment
|
379 |
+
image_viewer()
|
380 |
+
|
381 |
+
|
382 |
+
@st.experimental_dialog("Confirm Database Backup")
|
383 |
+
def update():
|
384 |
+
st.write("Do you want to backup the new changes in the database?")
|
385 |
+
if st.button("Confirm",type="primary"):
|
386 |
+
st.write("Updating Database....")
|
387 |
+
st.session_state.update = {"Done": True}
|
388 |
+
|
389 |
+
update_db()
|
390 |
+
|
391 |
+
st.success('Backup Complete!', icon="✅")
|
392 |
+
time.sleep(2)
|
393 |
+
st.rerun()
|
394 |
+
|
395 |
+
if "update" not in st.session_state:
|
396 |
+
with col2_main:
|
397 |
+
update_button = st.button("Update Database",type="primary")
|
398 |
+
if update_button:
|
399 |
+
update()
|
400 |
+
|
401 |
+
|
402 |
+
|
embedding.py
CHANGED
@@ -1,370 +1,425 @@
|
|
1 |
-
from PyPDF2 import PdfReader
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import concurrent.futures
|
6 |
-
import random
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
from langchain_community.document_loaders import WebBaseLoader
|
9 |
-
from langchain_community.document_loaders import PyPDFLoader
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
import google.generativeai as genai
|
12 |
-
from langchain_core.messages import HumanMessage
|
13 |
-
from io import BytesIO
|
14 |
-
import numpy as np
|
15 |
-
import re
|
16 |
-
import torch
|
17 |
-
from transformers import AutoTokenizer, AutoModel
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
model.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
'''
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
}
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
178 |
-
"
|
179 |
-
"
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
"
|
184 |
-
"
|
185 |
-
"Additional Details": None
|
186 |
-
},
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
"
|
195 |
-
"
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
"
|
201 |
-
"
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
print("
|
253 |
-
|
254 |
-
if tag_option==
|
255 |
-
history
|
256 |
-
|
257 |
-
else:
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import concurrent.futures
|
6 |
+
import random
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_community.document_loaders import WebBaseLoader
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
import google.generativeai as genai
|
12 |
+
from langchain_core.messages import HumanMessage
|
13 |
+
from io import BytesIO
|
14 |
+
import numpy as np
|
15 |
+
import re
|
16 |
+
import torch
|
17 |
+
from transformers import AutoTokenizer, AutoModel
|
18 |
+
import numpy as np
|
19 |
+
import onnxruntime as ort
|
20 |
+
# import torch._dynamo
|
21 |
+
import time
|
22 |
+
# torch._dynamo.config.suppress_errors = True
|
23 |
+
|
24 |
+
from search import search_images
|
25 |
+
|
26 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
27 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
28 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
29 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
30 |
+
|
31 |
+
vision = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
32 |
+
vision1 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
33 |
+
vision2 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
34 |
+
vision3 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True)
|
37 |
+
# model = AutoModel.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True)
|
38 |
+
model_path = "model_opt2_QInt8.onnx"
|
39 |
+
|
40 |
+
session = ort.InferenceSession(model_path)
|
41 |
+
# model = torch.compile(model)
|
42 |
+
# model.to('cpu') # Ensure the model is on the CPU
|
43 |
+
|
44 |
+
from transformers import PreTrainedTokenizerFast
|
45 |
+
|
46 |
+
class TokenBasedTextSplitter:
|
47 |
+
def __init__(self, tokenizer_path='tokenizer.json', chunk_size=2000, chunk_overlap=50):
|
48 |
+
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_path)
|
49 |
+
self.chunk_size = chunk_size
|
50 |
+
self.chunk_overlap = chunk_overlap
|
51 |
+
|
52 |
+
def split_text(self, text):
|
53 |
+
tokens = self.tokenizer.tokenize(text)
|
54 |
+
chunks = []
|
55 |
+
|
56 |
+
for i in range(0, len(tokens), self.chunk_size - self.chunk_overlap):
|
57 |
+
chunk = tokens[i:i + self.chunk_size]
|
58 |
+
chunks.append(self.tokenizer.convert_tokens_to_string(chunk))
|
59 |
+
|
60 |
+
return chunks
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
genai.configure(api_key="AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI")
|
65 |
+
|
66 |
+
def pdf_extractor(link):
|
67 |
+
text = ''
|
68 |
+
|
69 |
+
try:
|
70 |
+
# Fetch the PDF file from the URL
|
71 |
+
response = requests.get(link)
|
72 |
+
response.raise_for_status() # Raise an error for bad status codes
|
73 |
+
|
74 |
+
# Use BytesIO to handle the PDF content in memory
|
75 |
+
pdf_file = BytesIO(response.content)
|
76 |
+
|
77 |
+
# Load the PDF file
|
78 |
+
reader = PdfReader(pdf_file)
|
79 |
+
for page in reader.pages:
|
80 |
+
text += page.extract_text() # Extract text from each page
|
81 |
+
|
82 |
+
except requests.exceptions.HTTPError as e:
|
83 |
+
print(f'HTTP error occurred: {e}')
|
84 |
+
except Exception as e:
|
85 |
+
print(f'An error occurred: {e}')
|
86 |
+
|
87 |
+
return text
|
88 |
+
|
89 |
+
def web_extractor(link):
|
90 |
+
text = ''
|
91 |
+
|
92 |
+
try:
|
93 |
+
loader = WebBaseLoader(link)
|
94 |
+
pages = loader.load_and_split()
|
95 |
+
|
96 |
+
for page in pages:
|
97 |
+
text+=page.page_content
|
98 |
+
except:
|
99 |
+
pass
|
100 |
+
|
101 |
+
return text
|
102 |
+
|
103 |
+
def imporve_text(text):
|
104 |
+
|
105 |
+
prompt = f'''
|
106 |
+
Please rewrite the following text to make it short, descriptive, concise, and of high quality.
|
107 |
+
Ensure that all essential information is retained.
|
108 |
+
Focus on improving clarity, coherence, and word choice without altering the original meaning.
|
109 |
+
|
110 |
+
text = {text}
|
111 |
+
'''
|
112 |
+
|
113 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
114 |
+
result = model.invoke(prompt)
|
115 |
+
|
116 |
+
return result.content
|
117 |
+
|
118 |
+
def feature_extraction(tag, history , context):
|
119 |
+
|
120 |
+
prompt = f'''
|
121 |
+
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
122 |
+
1. Tag_History: Previously gathered information about the product.
|
123 |
+
2. Tag_Context: New data that might contain additional details.
|
124 |
+
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
125 |
+
Guidelines:
|
126 |
+
- Only add new details that are relevant to the {tag} FIELD.
|
127 |
+
- Do not add or modify any other fields in the Tag_History.
|
128 |
+
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
129 |
+
Here is the data:
|
130 |
+
Tag_Context: {str(context)}
|
131 |
+
Tag_History: {history}
|
132 |
+
Respond with the updated Tag_History.
|
133 |
+
'''
|
134 |
+
|
135 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
136 |
+
result = model.invoke(prompt)
|
137 |
+
|
138 |
+
return result.content
|
139 |
+
|
140 |
+
def feature_extraction_image(url):
|
141 |
+
text = ' '
|
142 |
+
model = genai.GenerativeModel('gemini-1.5-flash-001')
|
143 |
+
try:
|
144 |
+
res = model.generate_content(['Describe this image to me',url])
|
145 |
+
text = res.text
|
146 |
+
|
147 |
+
except:
|
148 |
+
pass
|
149 |
+
return text
|
150 |
+
|
151 |
+
def detailed_feature_extraction(find, context):
|
152 |
+
|
153 |
+
prompt = f'''
|
154 |
+
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
155 |
+
1. Context: The gathered information about the product.
|
156 |
+
2. Format: Details which need to be filled based on Context.
|
157 |
+
Your job is to read the Context and update the relevant field in Format using Context.
|
158 |
+
Guidelines:
|
159 |
+
- Only add details that are relevant to the individual FIELD.
|
160 |
+
- Do not add or modify any other fields in the Format.
|
161 |
+
- If nothing found return None.
|
162 |
+
Here is the data:
|
163 |
+
The Context is {str(context)}
|
164 |
+
The Format is {str(find)}
|
165 |
+
'''
|
166 |
+
|
167 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
168 |
+
result = model.invoke(prompt)
|
169 |
+
|
170 |
+
return result.content
|
171 |
+
|
172 |
+
def detailed_history(history):
|
173 |
+
|
174 |
+
details = {
|
175 |
+
"Introduction": {
|
176 |
+
"Product Name": None,
|
177 |
+
"Overview of the product": None,
|
178 |
+
"Purpose of the manual": None,
|
179 |
+
"Audience": None,
|
180 |
+
"Additional Details": None
|
181 |
+
},
|
182 |
+
"Specifications": {
|
183 |
+
"Technical specifications": None,
|
184 |
+
"Performance metrics": None,
|
185 |
+
"Additional Details": None
|
186 |
+
},
|
187 |
+
"Product Overview": {
|
188 |
+
"Product features": None,
|
189 |
+
"Key components and parts": None,
|
190 |
+
"Additional Details": None
|
191 |
+
},
|
192 |
+
"Safety Information": {
|
193 |
+
"Safety warnings and precautions": None,
|
194 |
+
"Compliance and certification information": None,
|
195 |
+
"Additional Details": None
|
196 |
+
},
|
197 |
+
"Installation Instructions": {
|
198 |
+
"Unboxing and inventory checklist": None,
|
199 |
+
"Step-by-step installation guide": None,
|
200 |
+
"Required tools and materials": None,
|
201 |
+
"Additional Details": None
|
202 |
+
},
|
203 |
+
"Setup and Configuration": {
|
204 |
+
"Initial setup procedures": None,
|
205 |
+
"Configuration settings": None,
|
206 |
+
"Troubleshooting setup issues": None,
|
207 |
+
"Additional Details": None
|
208 |
+
},
|
209 |
+
"Operation Instructions": {
|
210 |
+
"How to use the product": None,
|
211 |
+
"Detailed instructions for different functionalities": None,
|
212 |
+
"User interface guide": None,
|
213 |
+
"Additional Details": None
|
214 |
+
},
|
215 |
+
"Maintenance and Care": {
|
216 |
+
"Cleaning instructions": None,
|
217 |
+
"Maintenance schedule": None,
|
218 |
+
"Replacement parts and accessories": None,
|
219 |
+
"Additional Details": None
|
220 |
+
},
|
221 |
+
"Troubleshooting": {
|
222 |
+
"Common issues and solutions": None,
|
223 |
+
"Error messages and their meanings": None,
|
224 |
+
"Support Information": None,
|
225 |
+
"Additional Details": None
|
226 |
+
},
|
227 |
+
"Warranty Information": {
|
228 |
+
"Terms and Conditions": None,
|
229 |
+
"Service and repair information": None,
|
230 |
+
"Additional Details": None
|
231 |
+
},
|
232 |
+
"Legal Information": {
|
233 |
+
"Copyright information": None,
|
234 |
+
"Trademarks and patents": None,
|
235 |
+
"Disclaimers": None,
|
236 |
+
"Additional Details": None
|
237 |
+
|
238 |
+
}
|
239 |
+
}
|
240 |
+
|
241 |
+
for key,val in history.items():
|
242 |
+
|
243 |
+
find = details[key]
|
244 |
+
|
245 |
+
details[key] = str(detailed_feature_extraction(find,val))
|
246 |
+
|
247 |
+
return details
|
248 |
+
|
249 |
+
|
250 |
+
def get_embeddings(link,tag_option):
|
251 |
+
|
252 |
+
print(f"\n--> Creating Embeddings - {link}")
|
253 |
+
|
254 |
+
if tag_option=='Complete Document Similarity':
|
255 |
+
history = { "Details": "" }
|
256 |
+
|
257 |
+
else:
|
258 |
+
history = {
|
259 |
+
"Introduction": "",
|
260 |
+
"Specifications": "",
|
261 |
+
"Product Overview": "",
|
262 |
+
"Safety Information": "",
|
263 |
+
"Installation Instructions": "",
|
264 |
+
"Setup and Configuration": "",
|
265 |
+
"Operation Instructions": "",
|
266 |
+
"Maintenance and Care": "",
|
267 |
+
"Troubleshooting": "",
|
268 |
+
"Warranty Information": "",
|
269 |
+
"Legal Information": ""
|
270 |
+
}
|
271 |
+
|
272 |
+
# Extract Text -----------------------------
|
273 |
+
print("Extracting Text")
|
274 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
275 |
+
text = web_extractor(link)
|
276 |
+
else:
|
277 |
+
text = pdf_extractor(link)
|
278 |
+
|
279 |
+
# Create Chunks ----------------------------
|
280 |
+
print("Writing Tag Data")
|
281 |
+
|
282 |
+
|
283 |
+
if tag_option=="Complete Document Similarity":
|
284 |
+
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000])
|
285 |
+
|
286 |
+
else:
|
287 |
+
chunks = text_splitter.create_documents(text)
|
288 |
+
|
289 |
+
for chunk in chunks:
|
290 |
+
|
291 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
292 |
+
future_to_key = {
|
293 |
+
executor.submit(
|
294 |
+
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
295 |
+
): key for key in history
|
296 |
+
}
|
297 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
298 |
+
key = future_to_key[future]
|
299 |
+
try:
|
300 |
+
response = future.result()
|
301 |
+
history[key] = response
|
302 |
+
except Exception as e:
|
303 |
+
print(f"Error processing {key}: {e}")
|
304 |
+
|
305 |
+
print("Creating Vectors")
|
306 |
+
genai_embeddings=[]
|
307 |
+
|
308 |
+
for tag in history:
|
309 |
+
result = genai.embed_content(
|
310 |
+
model="models/embedding-001",
|
311 |
+
content=history[tag],
|
312 |
+
task_type="retrieval_document")
|
313 |
+
genai_embeddings.append(result['embedding'])
|
314 |
+
|
315 |
+
|
316 |
+
return history,genai_embeddings
|
317 |
+
|
318 |
+
def get_embed_chroma(link):
|
319 |
+
|
320 |
+
print(f"\n--> Creating Embeddings - {link}")
|
321 |
+
|
322 |
+
# Extract Text -----------------------------
|
323 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
324 |
+
text = web_extractor(link)
|
325 |
+
else:
|
326 |
+
text = pdf_extractor(link)
|
327 |
+
print("\u2713 Extracting Text")
|
328 |
+
|
329 |
+
# Create Chunks ----------------------------
|
330 |
+
|
331 |
+
text = re.sub(r'\.{2,}', '.', text)
|
332 |
+
text = re.sub(r'\s{2,}', ' ', text)
|
333 |
+
text = re.sub(r'\d{7,}', '', text)
|
334 |
+
|
335 |
+
text = re.sub(r'\n{2,}', '\n', text)
|
336 |
+
|
337 |
+
|
338 |
+
chunks = text_splitter_small.split_text(text)
|
339 |
+
# print(chunks[:2])
|
340 |
+
print("\u2713 Writing Tag Data")
|
341 |
+
|
342 |
+
# Creating Vector
|
343 |
+
embedding_vectors=[]
|
344 |
+
# textual_data = []
|
345 |
+
print("\u2713 Creating Vectors")
|
346 |
+
|
347 |
+
|
348 |
+
# batch_size = 1
|
349 |
+
# # Process chunks in batches
|
350 |
+
# for i in range(0, len(chunks), batch_size):
|
351 |
+
# batch = chunks[i:i + batch_size]
|
352 |
+
|
353 |
+
# # texts = [text for text in batch]
|
354 |
+
# # print(texts)
|
355 |
+
|
356 |
+
t1 = time.time()
|
357 |
+
for chunk in chunks:
|
358 |
+
# Tokenize the input text
|
359 |
+
inputs = tokenizer(chunk, return_tensors="np", padding=True, truncation=True)
|
360 |
+
|
361 |
+
# Convert inputs to int64
|
362 |
+
input_ids = inputs['input_ids'].astype(np.int64)
|
363 |
+
attention_mask = inputs['attention_mask'].astype(np.int64)
|
364 |
+
token_type_ids = inputs.get('token_type_ids', np.zeros_like(input_ids)).astype(np.int64) # Some models might not use token_type_ids
|
365 |
+
|
366 |
+
# Create the input feed dictionary
|
367 |
+
input_feed = {
|
368 |
+
'input_ids': input_ids,
|
369 |
+
'attention_mask': attention_mask,
|
370 |
+
'token_type_ids': token_type_ids
|
371 |
+
}
|
372 |
+
|
373 |
+
# Get the model's outputs
|
374 |
+
outputs = session.run(None, input_feed)
|
375 |
+
|
376 |
+
# Convert the outputs to numpy and process as needed
|
377 |
+
last_hidden_state = np.array(outputs[0])
|
378 |
+
embeddings = last_hidden_state.mean(axis=1).tolist()
|
379 |
+
embedding_vectors.append(embeddings)
|
380 |
+
# textual_data.a(text)
|
381 |
+
|
382 |
+
t2 = time.time()
|
383 |
+
print(t2-t1)
|
384 |
+
return chunks , embedding_vectors
|
385 |
+
|
386 |
+
|
387 |
+
def get_image_embeddings(Product):
|
388 |
+
image_embeddings = []
|
389 |
+
|
390 |
+
links = search_images(Product)
|
391 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
392 |
+
descriptions = list(executor.map(feature_extraction_image, links))
|
393 |
+
|
394 |
+
for description in descriptions:
|
395 |
+
result = genai.embed_content(
|
396 |
+
model="models/embedding-001",
|
397 |
+
content=description,
|
398 |
+
task_type="retrieval_document")
|
399 |
+
|
400 |
+
image_embeddings.append(result['embedding'])
|
401 |
+
# print(image_embeddings)
|
402 |
+
return image_embeddings , links
|
403 |
+
|
404 |
+
global text_splitter
|
405 |
+
global data
|
406 |
+
global history
|
407 |
+
|
408 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
409 |
+
chunk_size = 10000,
|
410 |
+
chunk_overlap = 100,
|
411 |
+
separators = ["",''," "]
|
412 |
+
)
|
413 |
+
|
414 |
+
# text_splitter_small = RecursiveCharacterTextSplitter(
|
415 |
+
# chunk_size = 2000,
|
416 |
+
# chunk_overlap = 100,
|
417 |
+
# separators = ["",''," "]
|
418 |
+
# )
|
419 |
+
|
420 |
+
text_splitter_small = TokenBasedTextSplitter(chunk_size=500, chunk_overlap=50)
|
421 |
+
# chunks = splitter.split_text(text)
|
422 |
+
|
423 |
+
if __name__ == '__main__':
|
424 |
+
print(get_embed_chroma('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf'))
|
425 |
+
# print(get_image_embeddings(Product='Samsung Galaxy S24'))
|
github_storage.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from github import Github
|
3 |
+
import base64
|
4 |
+
import shutil
|
5 |
+
import zipfile
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
# Global Variables
|
10 |
+
|
11 |
+
# HF ------------
|
12 |
+
hf_folder_path = '/home/user/app/embeddings'
|
13 |
+
zip_name = 'embeddings'
|
14 |
+
|
15 |
+
# Github -------
|
16 |
+
github_token = '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' # Replace with your GitHub token
|
17 |
+
repo_name = 'AdityaMetkar/Patseer-Database' # Replace with your repository, e.g., 'octocat/Hello-World'
|
18 |
+
folder_path = 'Manual Database/embeddings.zip' # Replace with the path to the folder in the repository
|
19 |
+
|
20 |
+
# Authenticate to GitHub
|
21 |
+
g = Github(github_token)
|
22 |
+
repo = g.get_repo(repo_name)
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# Functions -------------------------------
|
27 |
+
def zip_folder():
|
28 |
+
shutil.make_archive(zip_name, 'zip', hf_folder_path)
|
29 |
+
return zip_name + '.zip'
|
30 |
+
|
31 |
+
|
32 |
+
def update_db():
|
33 |
+
|
34 |
+
try:
|
35 |
+
# Check if the file already exists in the repository
|
36 |
+
existing_file = repo.get_contents(folder_path)
|
37 |
+
|
38 |
+
compressed_zip = zip_folder()
|
39 |
+
with open(compressed_zip, 'rb') as file:
|
40 |
+
file_content = file.read()
|
41 |
+
|
42 |
+
# Update the existing file
|
43 |
+
repo.update_file(existing_file.path, "New DB Update", file_content, existing_file.sha)
|
44 |
+
print(f"Updated {folder_path} in GitHub repository.")
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error: {e}")
|
48 |
+
|
49 |
+
|
50 |
+
def download_db():
|
51 |
+
if not os.path.exists(hf_folder_path):
|
52 |
+
os.makedirs(hf_folder_path)
|
53 |
+
|
54 |
+
file_content = repo.get_contents(folder_path)
|
55 |
+
|
56 |
+
try:
|
57 |
+
# Download the zip file content from GitHub
|
58 |
+
file_content = repo.get_contents(folder_path)
|
59 |
+
zip_data = base64.b64decode(file_content.content)
|
60 |
+
|
61 |
+
# Extract the downloaded zip file directly to hf_folder_path using shutil
|
62 |
+
with zipfile.ZipFile(BytesIO(zip_data)) as zip_ref:
|
63 |
+
for file in zip_ref.namelist():
|
64 |
+
zip_ref.extract(file, hf_folder_path)
|
65 |
+
|
66 |
+
print(f"Successfully unzipped files to {hf_folder_path}")
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error: {e}")
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# Download the folder
|
75 |
+
# download_folder()
|
76 |
+
# update_db()
|
77 |
+
|
preprocess.py
CHANGED
@@ -46,7 +46,7 @@ logging.basicConfig(level=logging.INFO)
|
|
46 |
|
47 |
data = False
|
48 |
seen = set()
|
49 |
-
existing_products_urls = set(
|
50 |
|
51 |
|
52 |
|
@@ -121,8 +121,7 @@ def extract_text_from_pdf(pdf_file, pages):
|
|
121 |
page = reader.pages[page_num]
|
122 |
extracted_text += page.extract_text() + "\n"
|
123 |
else:
|
124 |
-
|
125 |
-
|
126 |
return extracted_text
|
127 |
|
128 |
except:
|
|
|
46 |
|
47 |
data = False
|
48 |
seen = set()
|
49 |
+
existing_products_urls = set()
|
50 |
|
51 |
|
52 |
|
|
|
121 |
page = reader.pages[page_num]
|
122 |
extracted_text += page.extract_text() + "\n"
|
123 |
else:
|
124 |
+
pass
|
|
|
125 |
return extracted_text
|
126 |
|
127 |
except:
|
requirements.txt
CHANGED
@@ -1,28 +1,32 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
fastapi==0.111.0
|
6 |
-
fitz==0.0.1.dev2
|
7 |
-
Flask==3.
|
8 |
-
googlesearch_python==1.2.4
|
9 |
-
langchain==0.2.
|
10 |
-
langchain_community==0.2.
|
11 |
-
|
12 |
-
|
13 |
-
langdetect==1.0.9
|
14 |
-
numpy
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler
|
2 |
+
beautifulsoup4==4.11.1
|
3 |
+
chromadb==0.5.3
|
4 |
+
duckduckgo_search==6.1.0
|
5 |
+
fastapi==0.111.0
|
6 |
+
fitz==0.0.1.dev2
|
7 |
+
Flask==2.3.1
|
8 |
+
googlesearch_python==1.2.4
|
9 |
+
langchain==0.2.6
|
10 |
+
langchain_community==0.2.6
|
11 |
+
langchain_core==0.2.10
|
12 |
+
langchain_google_genai==1.0.7
|
13 |
+
langdetect==1.0.9
|
14 |
+
numpy
|
15 |
+
onnx
|
16 |
+
onnxruntime
|
17 |
+
pandas==1.5.2
|
18 |
+
pdfplumber==0.11.0
|
19 |
+
Pillow==10.3.0
|
20 |
+
pinecone==4.0.0
|
21 |
+
plotly==5.22.0
|
22 |
+
protobuf<5
|
23 |
+
pydantic==1.10.9
|
24 |
+
pymongo
|
25 |
+
PyPDF2==3.0.1
|
26 |
+
pygithub
|
27 |
+
Requests==2.32.3
|
28 |
+
streamlit==1.36.0
|
29 |
+
torch==2.2.0
|
30 |
+
tqdm==4.66.4
|
31 |
+
transformers==4.41.2
|
32 |
+
zipfile36
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|