Spaces:
Sleeping
Sleeping
import streamlit as st | |
import concurrent.futures | |
from functools import partial | |
import numpy as np | |
from io import StringIO | |
import sys | |
import time | |
# File Imports | |
from embedding import get_embeddings # Ensure this file/module is available | |
from preprocess import filtering # Ensure this file/module is available | |
from search import * | |
# Cosine Similarity Function | |
def cosine_similarity(vec1, vec2): | |
vec1 = np.array(vec1) | |
vec2 = np.array(vec2) | |
dot_product = np.dot(vec1, vec2) | |
magnitude_vec1 = np.linalg.norm(vec1) | |
magnitude_vec2 = np.linalg.norm(vec2) | |
if magnitude_vec1 == 0 or magnitude_vec2 == 0: | |
return 0.0 | |
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2) | |
return cosine_sim | |
# Logger class to capture output | |
class StreamCapture: | |
def __init__(self): | |
self.output = StringIO() | |
self._stdout = sys.stdout | |
def __enter__(self): | |
sys.stdout = self.output | |
return self.output | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
sys.stdout = self._stdout | |
# Main Function | |
def score(main_product, main_url, search, logger, log_area): | |
data = {} | |
if search == 'all': | |
similar = extract_similar_products(main_product)[:1] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [] | |
search_functions = [search_google, search_duckduckgo, search_github, search_wikipedia] | |
for search_func in search_functions: | |
futures.append(executor.submit(partial(filtering, search_func(similar), main_product, similar))) | |
for future in concurrent.futures.as_completed(futures): | |
data[similar] = future.result() | |
else: | |
similar = extract_similar_products(main_product)[:1] | |
for product in similar: | |
if search == 'google': | |
data[product] = filtering(search_google(product), main_product, product) | |
elif search == 'duckduckgo': | |
data[product] = filtering(search_duckduckgo(product), main_product, product) | |
elif search == 'archive': | |
data[product] = filtering(search_archive(product), main_product, product) | |
elif search == 'github': | |
data[product] = filtering(search_github(product), main_product, product) | |
elif search == 'wikipedia': | |
data[product] = filtering(search_wikipedia(product), main_product, product) | |
logger.write("\n\nFiltered Links ------------------>\n") | |
logger.write(str(data) + "\n") | |
log_area.text(logger.getvalue()) | |
logger.write("\n\nCreating Main product Embeddings ---------->\n") | |
main_result, main_embedding = get_embeddings(main_url) | |
log_area.text(logger.getvalue()) | |
cosine_sim_scores = [] | |
logger.write("\n\nCreating Similar product Embeddings ---------->\n") | |
log_area.text(logger.getvalue()) | |
for product in data: | |
for link in data[product][:2]: | |
similar_result, similar_embedding = get_embeddings(link) | |
log_area.text(logger.getvalue()) | |
for i in range(len(main_embedding)): | |
score = cosine_similarity(main_embedding[i], similar_embedding[i]) | |
cosine_sim_scores.append((product, link, i, score)) | |
log_area.text(logger.getvalue()) | |
logger.write("--------------- DONE -----------------\n") | |
log_area.text(logger.getvalue()) | |
return cosine_sim_scores, main_result | |
# Streamlit Interface | |
st.title("Product Infringement Checker") | |
# Inputs | |
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb') | |
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf') | |
search_method = st.selectbox('Choose Search Engine', ['duckduckgo', 'google', 'archive', 'github', 'wikipedia', 'all']) | |
if st.button('Check for Infringement'): | |
log_output = st.empty() # Placeholder for log output | |
with st.spinner('Processing...'): | |
with StreamCapture() as logger: | |
cosine_sim_scores, main_result = score(main_product, main_url, search_method, logger, log_output) | |
st.success('Processing complete!') | |
st.subheader("Cosine Similarity Scores") | |
# = score(main_product, main_url, search, logger, log_output) | |
tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information'] | |
for product, link, index, value in cosine_sim_scores: | |
if not index: | |
st.write(f"Product: {product}, Link: {link}") | |
st.write(f"{tags[index]:<20} Cosine Similarity Score: {value:.2f}") |