Spaces:
Runtime error
Runtime error
Updated UI and added option for single image generation
Browse files- app.py +10 -261
- pages/Fusion Fashion.py +282 -0
- pages/Style One.py +256 -0
- pics/logo.jpeg +0 -0
app.py
CHANGED
@@ -1,268 +1,17 @@
|
|
1 |
-
import random
|
2 |
import streamlit as st
|
3 |
-
import torch
|
4 |
-
import PIL
|
5 |
-
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
-
import imageio
|
8 |
-
from models import get_instrumented_model
|
9 |
-
from decomposition import get_or_compute
|
10 |
-
from config import Config
|
11 |
-
from skimage import img_as_ubyte
|
12 |
-
import clip
|
13 |
-
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
|
14 |
-
from torch.optim import Adam
|
15 |
-
from stqdm import stqdm
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
torch.autograd.set_grad_enabled(True)
|
21 |
-
torch.backends.cudnn.benchmark = True
|
22 |
-
|
23 |
-
# Specify model to use
|
24 |
-
config = Config(
|
25 |
-
model='StyleGAN2',
|
26 |
-
layer='style',
|
27 |
-
output_class= 'lookbook',
|
28 |
-
components=80,
|
29 |
-
use_w=True,
|
30 |
-
batch_size=5_000, # style layer quite small
|
31 |
)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
preprocess = Compose([
|
36 |
-
Resize(224),
|
37 |
-
CenterCrop(224),
|
38 |
-
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
|
39 |
-
])
|
40 |
-
|
41 |
-
@st.cache_data
|
42 |
-
def clip_optimized_latent(text, seed, iterations=25, lr=5e-2):
|
43 |
-
seed = int(seed)
|
44 |
-
text_input = clip.tokenize([text]).to(device)
|
45 |
-
|
46 |
-
# Initialize a random latent vector
|
47 |
-
latent_vector = model.sample_latent(1,seed=seed).detach().to(device)
|
48 |
-
latent_vector.requires_grad = True
|
49 |
-
latent_vector = [latent_vector]*model.get_max_latents()
|
50 |
-
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
|
51 |
-
optimizer = Adam(params, lr=lr)
|
52 |
-
|
53 |
-
with torch.no_grad():
|
54 |
-
text_features = clip_model.encode_text(text_input)
|
55 |
-
|
56 |
-
#pbar = tqdm(range(iterations), dynamic_ncols=True)
|
57 |
-
|
58 |
-
for iteration in stqdm(range(iterations)):
|
59 |
-
optimizer.zero_grad()
|
60 |
-
|
61 |
-
# Generate an image from the latent vector
|
62 |
-
image = model.sample(params)
|
63 |
-
image = image.to(device)
|
64 |
-
|
65 |
-
# Preprocess the image for the CLIP model
|
66 |
-
image = preprocess(image)
|
67 |
-
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
|
68 |
-
|
69 |
-
# Extract features from the image
|
70 |
-
image_features = clip_model.encode_image(image)
|
71 |
-
|
72 |
-
# Calculate the loss and backpropagate
|
73 |
-
loss = -torch.cosine_similarity(text_features, image_features).mean()
|
74 |
-
loss.backward()
|
75 |
-
optimizer.step()
|
76 |
-
|
77 |
-
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
|
78 |
-
print(f"Loss: {loss.item()}")
|
79 |
-
w = [param.detach().cpu().numpy() for param in params]
|
80 |
-
|
81 |
-
return w
|
82 |
-
|
83 |
-
def mix_w(w1, w2, content, style):
|
84 |
-
for i in range(0,5):
|
85 |
-
w2[i] = w1[i] * (1 - content) + w2[i] * content
|
86 |
-
|
87 |
-
for i in range(5, 16):
|
88 |
-
w2[i] = w1[i] * (1 - style) + w2[i] * style
|
89 |
-
|
90 |
-
return w2
|
91 |
-
|
92 |
-
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
|
93 |
-
# blockPrint()
|
94 |
-
model.truncation = truncation
|
95 |
-
if w is None:
|
96 |
-
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
|
97 |
-
w = [w]*model.get_max_latents() # one per layer
|
98 |
-
else:
|
99 |
-
w_numpy = [x.cpu().detach().numpy() for x in w]
|
100 |
-
w = [np.expand_dims(x, 0) for x in w_numpy]
|
101 |
-
#w = [x.unsqueeze(0) for x in w]
|
102 |
-
|
103 |
-
|
104 |
-
for l in range(start, end):
|
105 |
-
for i in range(len(directions)):
|
106 |
-
w[l] = w[l] + directions[i] * distances[i] * scale
|
107 |
-
|
108 |
-
w = [torch.from_numpy(x).to(device) for x in w]
|
109 |
-
torch.cuda.empty_cache()
|
110 |
-
#save image and display
|
111 |
-
out = model.sample(w)
|
112 |
-
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
|
113 |
-
out = np.clip(out, 0.0, 1.0).squeeze()
|
114 |
-
|
115 |
-
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
|
116 |
-
|
117 |
-
|
118 |
-
if save is not None:
|
119 |
-
if disp == False:
|
120 |
-
print(save)
|
121 |
-
final_im.save(f'out/{seed}_{save:05}.png')
|
122 |
-
if disp:
|
123 |
-
display(final_im)
|
124 |
-
|
125 |
-
return final_im
|
126 |
-
|
127 |
-
## Generate image for app
|
128 |
-
def generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w1,w2):
|
129 |
-
|
130 |
-
scale = 1
|
131 |
-
params = {'c0': c0,
|
132 |
-
'c1': c1,
|
133 |
-
'c2': c2,
|
134 |
-
'c3': c3,
|
135 |
-
'c4': c4,
|
136 |
-
'c5': c5,
|
137 |
-
'c6': c6}
|
138 |
-
|
139 |
-
param_indexes = {'c0': 0,
|
140 |
-
'c1': 1,
|
141 |
-
'c2': 2,
|
142 |
-
'c3': 3,
|
143 |
-
'c4': 4,
|
144 |
-
'c5': 5,
|
145 |
-
'c6': 6}
|
146 |
-
|
147 |
-
directions = []
|
148 |
-
distances = []
|
149 |
-
for k, v in params.items():
|
150 |
-
directions.append(latent_dirs[param_indexes[k]])
|
151 |
-
distances.append(v)
|
152 |
-
|
153 |
-
if w1 is not None and w2 is not None:
|
154 |
-
w1 = [torch.from_numpy(x).to(device) for x in w1]
|
155 |
-
w2 = [torch.from_numpy(x).to(device) for x in w2]
|
156 |
-
|
157 |
-
|
158 |
-
#w1 = clip_optimized_latent(text1, seed1, iters)
|
159 |
-
im1 = model.sample(w1)
|
160 |
-
im1_np = im1.permute(0, 2, 3, 1).cpu().detach().numpy()
|
161 |
-
im1_np = np.clip(im1_np, 0.0, 1.0).squeeze()
|
162 |
-
|
163 |
-
#w2 = clip_optimized_latent(text2, seed2, iters)
|
164 |
-
im2 = model.sample(w2)
|
165 |
-
im2_np = im2.permute(0, 2, 3, 1).cpu().detach().numpy()
|
166 |
-
im2_np = np.clip(im2_np, 0.0, 1.0).squeeze()
|
167 |
-
|
168 |
-
combined_im = np.concatenate([im1_np, im2_np], axis=1)
|
169 |
-
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
|
170 |
-
|
171 |
-
|
172 |
-
mixed_w = mix_w(w1, w2, content, style)
|
173 |
-
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
|
174 |
-
|
175 |
-
|
176 |
-
# Streamlit app title
|
177 |
-
st.title("FashionGen Demo - AI assisted fashion design")
|
178 |
-
"""This application employs the StyleGAN framework, CLIP and GANSpace exploration techniques to synthesize images of garments from textual inputs. With training based on the comprehensive LookBook dataset, it supports an efficient fashion design process by transforming text into visual concepts, showcasing the practical application of Generative Adversarial Networks (GANs) in the realm of creative design."""
|
179 |
-
|
180 |
-
@st.cache_resource
|
181 |
-
def load_model():
|
182 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
183 |
-
# Load the pre-trained CLIP model
|
184 |
-
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
185 |
-
inst = get_instrumented_model(config.model, config.output_class,
|
186 |
-
config.layer, device, use_w=config.use_w)
|
187 |
-
return clip_model, inst
|
188 |
-
|
189 |
-
# Then, to load your models, call this function:
|
190 |
-
clip_model, inst = load_model()
|
191 |
-
model = inst.model
|
192 |
-
|
193 |
-
clip_model.eval()
|
194 |
-
model.eval()
|
195 |
-
|
196 |
-
path_to_components = get_or_compute(config, inst)
|
197 |
-
comps = np.load(path_to_components)
|
198 |
-
lst = comps.files
|
199 |
-
latent_dirs = []
|
200 |
-
latent_stdevs = []
|
201 |
-
|
202 |
-
load_activations = False
|
203 |
-
|
204 |
-
for item in lst:
|
205 |
-
if load_activations:
|
206 |
-
if item == 'act_comp':
|
207 |
-
for i in range(comps[item].shape[0]):
|
208 |
-
latent_dirs.append(comps[item][i])
|
209 |
-
if item == 'act_stdev':
|
210 |
-
for i in range(comps[item].shape[0]):
|
211 |
-
latent_stdevs.append(comps[item][i])
|
212 |
-
else:
|
213 |
-
if item == 'lat_comp':
|
214 |
-
for i in range(comps[item].shape[0]):
|
215 |
-
latent_dirs.append(comps[item][i])
|
216 |
-
if item == 'lat_stdev':
|
217 |
-
for i in range(comps[item].shape[0]):
|
218 |
-
latent_stdevs.append(comps[item][i])
|
219 |
-
|
220 |
-
## Side bar texts
|
221 |
-
st.sidebar.title('Tuning Parameters')
|
222 |
-
st.sidebar.subheader('(CLIP + GANSpace)')
|
223 |
-
|
224 |
-
|
225 |
-
# Create UI widgets
|
226 |
-
text1 = st.sidebar.text_input("Text Description 1")
|
227 |
-
text2 = st.sidebar.text_input("Text Description 2")
|
228 |
-
if 'seed1' not in st.session_state and 'seed2' not in st.session_state:
|
229 |
-
st.session_state['seed1'] = random.randint(1, 1000)
|
230 |
-
st.session_state['seed2'] = random.randint(1, 1000)
|
231 |
-
seed1 = st.sidebar.number_input("Seed 1", value= st.session_state['seed1'])
|
232 |
-
seed2 = st.sidebar.number_input("Seed 2", value= st.session_state['seed2'])
|
233 |
-
st.session_state['seed1'] = seed1
|
234 |
-
st.session_state['seed2'] = seed2
|
235 |
-
iters = st.sidebar.number_input("Iterations for CLIP Optimization", value = 50)
|
236 |
-
submit_button = st.sidebar.button("Submit")
|
237 |
-
content = st.sidebar.slider("Structural Composition", min_value=0.0, max_value=1.0, value=0.5)
|
238 |
-
style = st.sidebar.slider("Style", min_value=0.0, max_value=1.0, value=0.5)
|
239 |
-
truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
|
240 |
-
|
241 |
-
slider_min_val = -20
|
242 |
-
slider_max_val = 20
|
243 |
-
slider_step = 1
|
244 |
-
|
245 |
-
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
246 |
-
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
247 |
-
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
248 |
-
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
249 |
-
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
250 |
-
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
251 |
-
c6 = st.sidebar.slider("Modest Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0)
|
252 |
-
start_layer = st.sidebar.number_input("Start Layer", value=0)
|
253 |
-
end_layer = st.sidebar.number_input("End Layer", value=14)
|
254 |
-
|
255 |
|
|
|
|
|
|
|
256 |
|
257 |
-
if submit_button: # Execute when the submit button is pressed
|
258 |
-
w1 = clip_optimized_latent(text1, seed1, iters)
|
259 |
-
st.session_state['w1-np'] = w1
|
260 |
-
w2 = clip_optimized_latent(text2, seed2, iters)
|
261 |
-
st.session_state['w2-np'] = w2
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
st.image(output_im, caption="Output Image")
|
267 |
-
except:
|
268 |
-
pass
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="FashionGen",
|
5 |
+
page_icon="👗",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
)
|
7 |
|
8 |
+
#st.title("FashionGen")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
st.image('./pics/logo.jpeg')
|
11 |
+
'''#### About:'''
|
12 |
+
'''This application employs the StyleGAN framework, CLIP and GANSpace exploration techniques to synthesize images of garments from textual inputs. With training based on the comprehensive LookBook dataset, it supports an efficient fashion design process by transforming text into visual concepts, showcasing the practical application of Generative Adversarial Networks (GANs) in the realm of creative design.'''
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
''' There are two modes of image generatation: \n
|
16 |
+
**Fashion Fusion:** Takes two descriptions and generates two designs whose styles features can be combined and edited. \n
|
17 |
+
**Style One:** Takes a single description and generates one design whose style features can be edited.'''
|
|
|
|
|
|
pages/Fusion Fashion.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import imageio
|
8 |
+
from models import get_instrumented_model
|
9 |
+
from decomposition import get_or_compute
|
10 |
+
from config import Config
|
11 |
+
from skimage import img_as_ubyte
|
12 |
+
import clip
|
13 |
+
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
|
14 |
+
from torch.optim import Adam
|
15 |
+
from stqdm import stqdm
|
16 |
+
|
17 |
+
|
18 |
+
st.set_page_config(
|
19 |
+
page_title="Fusion Fashion",
|
20 |
+
page_icon="👗",
|
21 |
+
)
|
22 |
+
|
23 |
+
#torch.set_num_threads(8)
|
24 |
+
|
25 |
+
# Speed up computation
|
26 |
+
torch.autograd.set_grad_enabled(True)
|
27 |
+
torch.backends.cudnn.benchmark = True
|
28 |
+
|
29 |
+
# Specify model to use
|
30 |
+
config = Config(
|
31 |
+
model='StyleGAN2',
|
32 |
+
layer='style',
|
33 |
+
output_class= 'lookbook',
|
34 |
+
components=80,
|
35 |
+
use_w=True,
|
36 |
+
batch_size=5_000, # style layer quite small
|
37 |
+
)
|
38 |
+
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
|
41 |
+
preprocess = Compose([
|
42 |
+
Resize(224),
|
43 |
+
CenterCrop(224),
|
44 |
+
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
|
45 |
+
])
|
46 |
+
|
47 |
+
@st.cache_data
|
48 |
+
def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
|
49 |
+
seed = int(seed)
|
50 |
+
text_input = clip.tokenize([text]).to(device)
|
51 |
+
|
52 |
+
# Initialize a random latent vector
|
53 |
+
latent_vector = model.sample_latent(1,seed=seed).detach().to(device)
|
54 |
+
latent_vector.requires_grad = True
|
55 |
+
latent_vector = [latent_vector]*model.get_max_latents()
|
56 |
+
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
|
57 |
+
optimizer = Adam(params, lr=lr, betas=(0.9, 0.999))
|
58 |
+
|
59 |
+
#with torch.no_grad():
|
60 |
+
# text_features = clip_model.encode_text(text_input)
|
61 |
+
|
62 |
+
#pbar = tqdm(range(iterations), dynamic_ncols=True)
|
63 |
+
|
64 |
+
for iteration in stqdm(range(iterations)):
|
65 |
+
optimizer.zero_grad()
|
66 |
+
|
67 |
+
# Generate an image from the latent vector
|
68 |
+
image = model.sample(params)
|
69 |
+
image = image.to(device)
|
70 |
+
|
71 |
+
# Preprocess the image for the CLIP model
|
72 |
+
image = preprocess(image)
|
73 |
+
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
|
74 |
+
|
75 |
+
# Extract features from the image
|
76 |
+
#image_features = clip_model.encode_image(image)
|
77 |
+
|
78 |
+
# Calculate the loss and backpropagate
|
79 |
+
loss = 1 - clip_model(image, text_input)[0] / 100
|
80 |
+
#loss = -torch.cosine_similarity(text_features, image_features).mean()
|
81 |
+
loss.backward()
|
82 |
+
optimizer.step()
|
83 |
+
|
84 |
+
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
|
85 |
+
w = [param.detach().cpu().numpy() for param in params]
|
86 |
+
|
87 |
+
return w
|
88 |
+
|
89 |
+
def mix_w(w1, w2, content, style):
|
90 |
+
for i in range(0,5):
|
91 |
+
w2[i] = w1[i] * (1 - content) + w2[i] * content
|
92 |
+
|
93 |
+
for i in range(5, 16):
|
94 |
+
w2[i] = w1[i] * (1 - style) + w2[i] * style
|
95 |
+
|
96 |
+
return w2
|
97 |
+
|
98 |
+
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
|
99 |
+
# blockPrint()
|
100 |
+
model.truncation = truncation
|
101 |
+
if w is None:
|
102 |
+
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
|
103 |
+
w = [w]*model.get_max_latents() # one per layer
|
104 |
+
else:
|
105 |
+
w_numpy = [x.cpu().detach().numpy() for x in w]
|
106 |
+
w = [np.expand_dims(x, 0) for x in w_numpy]
|
107 |
+
#w = [x.unsqueeze(0) for x in w]
|
108 |
+
|
109 |
+
|
110 |
+
for l in range(start, end):
|
111 |
+
for i in range(len(directions)):
|
112 |
+
w[l] = w[l] + directions[i] * distances[i] * scale
|
113 |
+
|
114 |
+
w = [torch.from_numpy(x).to(device) for x in w]
|
115 |
+
torch.cuda.empty_cache()
|
116 |
+
#save image and display
|
117 |
+
out = model.sample(w)
|
118 |
+
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
|
119 |
+
out = np.clip(out, 0.0, 1.0).squeeze()
|
120 |
+
|
121 |
+
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
|
122 |
+
|
123 |
+
|
124 |
+
if save is not None:
|
125 |
+
if disp == False:
|
126 |
+
print(save)
|
127 |
+
final_im.save(f'out/{seed}_{save:05}.png')
|
128 |
+
if disp:
|
129 |
+
display(final_im)
|
130 |
+
|
131 |
+
return final_im
|
132 |
+
|
133 |
+
## Generate image for app
|
134 |
+
def generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w1,w2):
|
135 |
+
|
136 |
+
scale = 1
|
137 |
+
params = {'c0': c0,
|
138 |
+
'c1': c1,
|
139 |
+
'c2': c2,
|
140 |
+
'c3': c3,
|
141 |
+
'c4': c4,
|
142 |
+
'c5': c5,
|
143 |
+
'c6': c6}
|
144 |
+
|
145 |
+
param_indexes = {'c0': 0,
|
146 |
+
'c1': 1,
|
147 |
+
'c2': 2,
|
148 |
+
'c3': 3,
|
149 |
+
'c4': 4,
|
150 |
+
'c5': 5,
|
151 |
+
'c6': 6}
|
152 |
+
|
153 |
+
directions = []
|
154 |
+
distances = []
|
155 |
+
for k, v in params.items():
|
156 |
+
directions.append(latent_dirs[param_indexes[k]])
|
157 |
+
distances.append(v)
|
158 |
+
|
159 |
+
if w1 is not None and w2 is not None:
|
160 |
+
w1 = [torch.from_numpy(x).to(device) for x in w1]
|
161 |
+
w2 = [torch.from_numpy(x).to(device) for x in w2]
|
162 |
+
|
163 |
+
|
164 |
+
#w1 = clip_optimized_latent(text1, seed1, iters)
|
165 |
+
im1 = model.sample(w1)
|
166 |
+
im1_np = im1.permute(0, 2, 3, 1).cpu().detach().numpy()
|
167 |
+
im1_np = np.clip(im1_np, 0.0, 1.0).squeeze()
|
168 |
+
|
169 |
+
#w2 = clip_optimized_latent(text2, seed2, iters)
|
170 |
+
im2 = model.sample(w2)
|
171 |
+
im2_np = im2.permute(0, 2, 3, 1).cpu().detach().numpy()
|
172 |
+
im2_np = np.clip(im2_np, 0.0, 1.0).squeeze()
|
173 |
+
|
174 |
+
combined_im = np.concatenate([im1_np, im2_np], axis=1)
|
175 |
+
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
|
176 |
+
|
177 |
+
|
178 |
+
mixed_w = mix_w(w1, w2, content, style)
|
179 |
+
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
|
180 |
+
|
181 |
+
|
182 |
+
# Streamlit app title
|
183 |
+
st.title("Fusion Fashion")
|
184 |
+
|
185 |
+
@st.cache_resource
|
186 |
+
def load_model():
|
187 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
188 |
+
# Load the pre-trained CLIP model
|
189 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
190 |
+
inst = get_instrumented_model(config.model, config.output_class,
|
191 |
+
config.layer, device, use_w=config.use_w)
|
192 |
+
return clip_model, inst
|
193 |
+
|
194 |
+
# Then, to load your models, call this function:
|
195 |
+
clip_model, inst = load_model()
|
196 |
+
model = inst.model
|
197 |
+
|
198 |
+
|
199 |
+
path_to_components = get_or_compute(config, inst)
|
200 |
+
comps = np.load(path_to_components)
|
201 |
+
lst = comps.files
|
202 |
+
latent_dirs = []
|
203 |
+
latent_stdevs = []
|
204 |
+
|
205 |
+
load_activations = False
|
206 |
+
|
207 |
+
for item in lst:
|
208 |
+
if load_activations:
|
209 |
+
if item == 'act_comp':
|
210 |
+
for i in range(comps[item].shape[0]):
|
211 |
+
latent_dirs.append(comps[item][i])
|
212 |
+
if item == 'act_stdev':
|
213 |
+
for i in range(comps[item].shape[0]):
|
214 |
+
latent_stdevs.append(comps[item][i])
|
215 |
+
else:
|
216 |
+
if item == 'lat_comp':
|
217 |
+
for i in range(comps[item].shape[0]):
|
218 |
+
latent_dirs.append(comps[item][i])
|
219 |
+
if item == 'lat_stdev':
|
220 |
+
for i in range(comps[item].shape[0]):
|
221 |
+
latent_stdevs.append(comps[item][i])
|
222 |
+
|
223 |
+
## Side bar texts
|
224 |
+
st.sidebar.title('Customization Options')
|
225 |
+
|
226 |
+
|
227 |
+
# Create UI widgets
|
228 |
+
text1 = st.sidebar.text_input("Style Specs 1", help = "Provide a clear and concise description of the design you wish to generate. This helps the app understand your preferences and create a customized design that matches your vision.")
|
229 |
+
text2 = st.sidebar.text_input("Style Specs 2", help = "Provide a clear and concise description of the design you wish to generate. This helps the app understand your preferences and create a customized design that matches your vision.")
|
230 |
+
if 'seed1' not in st.session_state and 'seed2' not in st.session_state:
|
231 |
+
st.session_state['seed1'] = random.randint(1, 1000)
|
232 |
+
st.session_state['seed2'] = random.randint(1, 1000)
|
233 |
+
|
234 |
+
with st.sidebar.expander("Advanced"):
|
235 |
+
seed1 = st.number_input("ID 1", value= st.session_state['seed1'], help = "Capture this unique id to reproduce the exact same result later.")
|
236 |
+
seed2 = st.number_input("ID 2", value= st.session_state['seed2'], help = "Capture this unique id to reproduce the exact same result later.")
|
237 |
+
|
238 |
+
st.session_state['seed1'] = seed1
|
239 |
+
st.session_state['seed2'] = seed2
|
240 |
+
iters = st.number_input("Cycles", value = 25, help = "Increase the sensitivity of the algorithm to find the design matching the style description. Higher values might enhance the accuracy but may lead to slower loading times")
|
241 |
+
|
242 |
+
submit_button = st.sidebar.button("Discover")
|
243 |
+
content = st.sidebar.slider("Design Frame", min_value=0.0, max_value=1.0, value=0.5, help = "Increasing it makes the structure similar to the image on the right and decreasing it will make the structure similar to the image on the left")
|
244 |
+
style = st.sidebar.slider("Style Composition", min_value=0.0, max_value=1.0, value=0.5, help = "Increasing it makes the style/pattern similar to the image on the right and decreasing it will make the style/pattern similar to the image on the left")
|
245 |
+
truncation = 0.5
|
246 |
+
#truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
|
247 |
+
|
248 |
+
slider_min_val = -20
|
249 |
+
slider_max_val = 20
|
250 |
+
slider_step = 1
|
251 |
+
|
252 |
+
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0, help="Adjust the scaling of sleeve sizes. Increase to make sleeve sizes appear larger, and decrease to make them appear smaller.")
|
253 |
+
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of jacket features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
|
254 |
+
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Modify the dominance of the women's overcoat style. Increase the value to enhance its prominence, and decrease it to reduce its impact.")
|
255 |
+
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of coat features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
|
256 |
+
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Fine-tune the visibility of graphic elements. Increasing this value will make the graphics more prominent, while decreasing it will make them less visible.")
|
257 |
+
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Adjust the intensity of the color tones towards darker shades. Increasing this value will make the colors appear deeper, while decreasing it will lighten the overall color palette.")
|
258 |
+
c6 = st.sidebar.slider("Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0,help = "Control the emphasis on the neckline of the garment. Increase to highlight the neckline, and decrease to downplay its prominence.")
|
259 |
+
start_layer = 0
|
260 |
+
end_layer = 14
|
261 |
+
#start_layer = st.sidebar.number_input("Start Layer", value=0)
|
262 |
+
#end_layer = st.sidebar.number_input("End Layer", value=14)
|
263 |
+
|
264 |
+
# if 'w1-np' not in st.session_state:
|
265 |
+
# st.session_state['w1-np'] = None
|
266 |
+
|
267 |
+
# if 'w2-np' not in st.session_state:
|
268 |
+
# st.session_state['w2-np'] = None
|
269 |
+
|
270 |
+
|
271 |
+
if submit_button: # Execute when the submit button is pressed
|
272 |
+
w1 = clip_optimized_latent(text1, seed1, iters)
|
273 |
+
st.session_state['w1-np'] = w1
|
274 |
+
w2 = clip_optimized_latent(text2, seed2, iters)
|
275 |
+
st.session_state['w2-np'] = w2
|
276 |
+
|
277 |
+
try:
|
278 |
+
input_im, output_im = generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w1-np'],st.session_state['w2-np'])
|
279 |
+
st.image(input_im, caption="Input Image")
|
280 |
+
st.image(output_im, caption="Output Image")
|
281 |
+
except:
|
282 |
+
pass
|
pages/Style One.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import imageio
|
8 |
+
from models import get_instrumented_model
|
9 |
+
from decomposition import get_or_compute
|
10 |
+
from config import Config
|
11 |
+
from skimage import img_as_ubyte
|
12 |
+
import clip
|
13 |
+
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
|
14 |
+
from torch.optim import Adam
|
15 |
+
from stqdm import stqdm
|
16 |
+
|
17 |
+
|
18 |
+
st.set_page_config(
|
19 |
+
page_title="Style One",
|
20 |
+
page_icon="👗",
|
21 |
+
)
|
22 |
+
|
23 |
+
#torch.set_num_threads(8)
|
24 |
+
|
25 |
+
# Speed up computation
|
26 |
+
torch.autograd.set_grad_enabled(True)
|
27 |
+
torch.backends.cudnn.benchmark = True
|
28 |
+
|
29 |
+
# Specify model to use
|
30 |
+
config = Config(
|
31 |
+
model='StyleGAN2',
|
32 |
+
layer='style',
|
33 |
+
output_class= 'lookbook',
|
34 |
+
components=80,
|
35 |
+
use_w=True,
|
36 |
+
batch_size=5_000, # style layer quite small
|
37 |
+
)
|
38 |
+
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
|
41 |
+
preprocess = Compose([
|
42 |
+
Resize(224),
|
43 |
+
CenterCrop(224),
|
44 |
+
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
|
45 |
+
])
|
46 |
+
|
47 |
+
@st.cache_data
|
48 |
+
def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
|
49 |
+
seed = int(seed)
|
50 |
+
text_input = clip.tokenize([text]).to(device)
|
51 |
+
|
52 |
+
# Initialize a random latent vector
|
53 |
+
latent_vector = model.sample_latent(1,seed=seed).detach().to(device)
|
54 |
+
latent_vector.requires_grad = True
|
55 |
+
latent_vector = [latent_vector]*model.get_max_latents()
|
56 |
+
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
|
57 |
+
optimizer = Adam(params, lr=lr, betas=(0.9, 0.999))
|
58 |
+
|
59 |
+
#with torch.no_grad():
|
60 |
+
# text_features = clip_model.encode_text(text_input)
|
61 |
+
|
62 |
+
#pbar = tqdm(range(iterations), dynamic_ncols=True)
|
63 |
+
|
64 |
+
for iteration in stqdm(range(iterations)):
|
65 |
+
optimizer.zero_grad()
|
66 |
+
|
67 |
+
# Generate an image from the latent vector
|
68 |
+
image = model.sample(params)
|
69 |
+
image = image.to(device)
|
70 |
+
|
71 |
+
# Preprocess the image for the CLIP model
|
72 |
+
image = preprocess(image)
|
73 |
+
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
|
74 |
+
|
75 |
+
# Extract features from the image
|
76 |
+
#image_features = clip_model.encode_image(image)
|
77 |
+
|
78 |
+
# Calculate the loss and backpropagate
|
79 |
+
loss = 1 - clip_model(image, text_input)[0] / 100
|
80 |
+
#loss = -torch.cosine_similarity(text_features, image_features).mean()
|
81 |
+
loss.backward()
|
82 |
+
optimizer.step()
|
83 |
+
|
84 |
+
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
|
85 |
+
w = [param.detach().cpu().numpy() for param in params]
|
86 |
+
|
87 |
+
return w
|
88 |
+
|
89 |
+
|
90 |
+
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
|
91 |
+
# blockPrint()
|
92 |
+
model.truncation = truncation
|
93 |
+
if w is None:
|
94 |
+
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
|
95 |
+
w = [w]*model.get_max_latents() # one per layer
|
96 |
+
else:
|
97 |
+
w_numpy = [x.cpu().detach().numpy() for x in w]
|
98 |
+
w = [np.expand_dims(x, 0) for x in w_numpy]
|
99 |
+
#w = [x.unsqueeze(0) for x in w]
|
100 |
+
|
101 |
+
|
102 |
+
for l in range(start, end):
|
103 |
+
for i in range(len(directions)):
|
104 |
+
w[l] = w[l] + directions[i] * distances[i] * scale
|
105 |
+
|
106 |
+
w = [torch.from_numpy(x).to(device) for x in w]
|
107 |
+
torch.cuda.empty_cache()
|
108 |
+
#save image and display
|
109 |
+
out = model.sample(w)
|
110 |
+
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
|
111 |
+
out = np.clip(out, 0.0, 1.0).squeeze()
|
112 |
+
|
113 |
+
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
|
114 |
+
|
115 |
+
|
116 |
+
if save is not None:
|
117 |
+
if disp == False:
|
118 |
+
print(save)
|
119 |
+
final_im.save(f'out/{seed}_{save:05}.png')
|
120 |
+
if disp:
|
121 |
+
display(final_im)
|
122 |
+
|
123 |
+
return final_im
|
124 |
+
|
125 |
+
## Generate image for app
|
126 |
+
def generate_image(truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w):
|
127 |
+
|
128 |
+
scale = 1
|
129 |
+
params = {'c0': c0,
|
130 |
+
'c1': c1,
|
131 |
+
'c2': c2,
|
132 |
+
'c3': c3,
|
133 |
+
'c4': c4,
|
134 |
+
'c5': c5,
|
135 |
+
'c6': c6}
|
136 |
+
|
137 |
+
param_indexes = {'c0': 0,
|
138 |
+
'c1': 1,
|
139 |
+
'c2': 2,
|
140 |
+
'c3': 3,
|
141 |
+
'c4': 4,
|
142 |
+
'c5': 5,
|
143 |
+
'c6': 6}
|
144 |
+
|
145 |
+
directions = []
|
146 |
+
distances = []
|
147 |
+
for k, v in params.items():
|
148 |
+
directions.append(latent_dirs[param_indexes[k]])
|
149 |
+
distances.append(v)
|
150 |
+
|
151 |
+
if w is not None:
|
152 |
+
w = [torch.from_numpy(x).to(device) for x in w]
|
153 |
+
|
154 |
+
#w1 = clip_optimized_latent(text1, seed1, iters)
|
155 |
+
im = model.sample(w)
|
156 |
+
im_np = im.permute(0, 2, 3, 1).cpu().detach().numpy()
|
157 |
+
im_np = np.clip(im_np, 0.0, 1.0).squeeze()
|
158 |
+
|
159 |
+
|
160 |
+
input_im = Image.fromarray((im_np * 255).astype(np.uint8))
|
161 |
+
seed = 0
|
162 |
+
|
163 |
+
return input_im, display_sample_pytorch(seed, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=w, disp=False)
|
164 |
+
|
165 |
+
|
166 |
+
# Streamlit app title
|
167 |
+
st.title("Style One")
|
168 |
+
|
169 |
+
@st.cache_resource
|
170 |
+
def load_model():
|
171 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
172 |
+
# Load the pre-trained CLIP model
|
173 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
174 |
+
inst = get_instrumented_model(config.model, config.output_class,
|
175 |
+
config.layer, device, use_w=config.use_w)
|
176 |
+
return clip_model, inst
|
177 |
+
|
178 |
+
# Then, to load your models, call this function:
|
179 |
+
clip_model, inst = load_model()
|
180 |
+
model = inst.model
|
181 |
+
|
182 |
+
|
183 |
+
path_to_components = get_or_compute(config, inst)
|
184 |
+
comps = np.load(path_to_components)
|
185 |
+
lst = comps.files
|
186 |
+
latent_dirs = []
|
187 |
+
latent_stdevs = []
|
188 |
+
|
189 |
+
load_activations = False
|
190 |
+
|
191 |
+
for item in lst:
|
192 |
+
if load_activations:
|
193 |
+
if item == 'act_comp':
|
194 |
+
for i in range(comps[item].shape[0]):
|
195 |
+
latent_dirs.append(comps[item][i])
|
196 |
+
if item == 'act_stdev':
|
197 |
+
for i in range(comps[item].shape[0]):
|
198 |
+
latent_stdevs.append(comps[item][i])
|
199 |
+
else:
|
200 |
+
if item == 'lat_comp':
|
201 |
+
for i in range(comps[item].shape[0]):
|
202 |
+
latent_dirs.append(comps[item][i])
|
203 |
+
if item == 'lat_stdev':
|
204 |
+
for i in range(comps[item].shape[0]):
|
205 |
+
latent_stdevs.append(comps[item][i])
|
206 |
+
|
207 |
+
## Side bar texts
|
208 |
+
st.sidebar.title('Customization Options')
|
209 |
+
|
210 |
+
|
211 |
+
# Create UI widgets
|
212 |
+
text = st.sidebar.text_input("Style Specs", help = "Provide a clear and concise description of the design you wish to generate. This helps the app understand your preferences and create a customized design that matches your vision.")
|
213 |
+
if 'seed' not in st.session_state:
|
214 |
+
st.session_state['seed'] = random.randint(1, 1000)
|
215 |
+
|
216 |
+
with st.sidebar.expander("Advanced"):
|
217 |
+
seed = st.number_input("ID", value= st.session_state['seed'], help = "Capture this unique id to reproduce the exact same result later.")
|
218 |
+
|
219 |
+
st.session_state['seed'] = seed
|
220 |
+
iters = st.number_input("Cycles", value = 25, help = "Increase the sensitivity of the algorithm to find the design matching the style description. Higher values might enhance the accuracy but may lead to slower loading times")
|
221 |
+
submit_button = st.sidebar.button("Discover")
|
222 |
+
# content = st.sidebar.slider("Structural Composition", min_value=0.0, max_value=1.0, value=0.5)
|
223 |
+
# style = st.sidebar.slider("Style", min_value=0.0, max_value=1.0, value=0.5)
|
224 |
+
truncation = 0.5
|
225 |
+
#truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
|
226 |
+
|
227 |
+
slider_min_val = -20
|
228 |
+
slider_max_val = 20
|
229 |
+
slider_step = 1
|
230 |
+
|
231 |
+
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0, help="Adjust the scaling of sleeve sizes. Increase to make sleeve sizes appear larger, and decrease to make them appear smaller.")
|
232 |
+
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of jacket features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
|
233 |
+
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Modify the dominance of the women's overcoat style. Increase the value to enhance its prominence, and decrease it to reduce its impact.")
|
234 |
+
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of coat features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
|
235 |
+
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Fine-tune the visibility of graphic elements. Increasing this value will make the graphics more prominent, while decreasing it will make them less visible.")
|
236 |
+
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Adjust the intensity of the color tones towards darker shades. Increasing this value will make the colors appear deeper, while decreasing it will lighten the overall color palette.")
|
237 |
+
c6 = st.sidebar.slider("Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0,help = "Control the emphasis on the neckline of the garment. Increase to highlight the neckline, and decrease to downplay its prominence.")
|
238 |
+
start_layer = 0
|
239 |
+
end_layer = 14
|
240 |
+
#start_layer = st.sidebar.number_input("Start Layer", value=0)
|
241 |
+
#end_layer = st.sidebar.number_input("End Layer", value=14)
|
242 |
+
|
243 |
+
# if 'w-np' not in st.session_state:
|
244 |
+
# st.session_state['w-np'] = None
|
245 |
+
|
246 |
+
if submit_button: # Execute when the submit button is pressed
|
247 |
+
w = clip_optimized_latent(text, seed, iters)
|
248 |
+
st.session_state['w-np'] = w
|
249 |
+
|
250 |
+
|
251 |
+
try:
|
252 |
+
input_im, output_im = generate_image(truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w-np'])
|
253 |
+
st.image(input_im, caption="Input Image")
|
254 |
+
st.image(output_im, caption="Output Image")
|
255 |
+
except:
|
256 |
+
pass
|
pics/logo.jpeg
ADDED