Raj086's picture
Update app.py
fe62ed9
import streamlit as st
import os
from PIL import Image
import numpy as np
import pickle
import tensorflow
import pandas as pd
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
from sklearn.neighbors import NearestNeighbors
from numpy.linalg import norm
feature_list = np.array(pickle.load(open('embedding_large.pkl','rb')))
# print(feature_list)
filenames = pd.read_pickle('filenames_large.pkl')
# print(filenames)
feature_list_myntra = np.array(pickle.load(open('embedding_myntra.pkl','rb')))
# print(feature_list)
filenames_myntra = pd.read_pickle('filenames_myntra.pkl')
model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3))
model.trainable = False
model = tensorflow.keras.Sequential([
model,
GlobalMaxPooling2D()
])
st.title('Fashion Recommender System')
def save_uploaded_file(uploaded_file):
try:
with open(os.path.join('uploads',uploaded_file.name),'wb') as f:
f.write(uploaded_file.getbuffer())
return 1
except:
return 0
def feature_extraction(img_path,model):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
return normalized_result
def recommend(features,feature_list):
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean')
neighbors.fit(feature_list)
distances, indices = neighbors.kneighbors([features])
print(distances,indices)
return indices
def recommend_myntra(features,feature_list):
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean')
neighbors.fit(feature_list_myntra)
distances, indices = neighbors.kneighbors([features])
print(distances,indices)
return indices
#
menu = ['FR','FRM','AB']
option = st.sidebar.selectbox("Select your model",menu)
if option=='FR':
st.markdown("<h2 <style>color:red;</style>>Sites Under-Construction :-(</h2>",unsafe_allow_html=True)
elif option=='FRM':
uploaded_file = st.file_uploader("Choose an image")
if uploaded_file is not None:
if save_uploaded_file(uploaded_file):
display_image = Image.open(uploaded_file)
st.image(display_image)
# feature extract
features = feature_extraction(os.path.join("uploads",uploaded_file.name),model)
# recommendention
indices = recommend_myntra(features,feature_list)
# show
st.header("Recommend For You....")
st.text("")
col1,col2,col3,col4,col5 = st.columns(5)
with col1:
st.image(filenames_myntra[indices[0][1]])
with col2:
st.image(filenames_myntra[indices[0][2]])
with col3:
st.image(filenames_myntra[indices[0][3]])
with col4:
st.image(filenames_myntra[indices[0][4]])
with col5:
st.image(filenames_myntra[indices[0][5]])
else:
st.header("Some error occured in file upload")
elif option=="AB":
st.markdown("FR: First Model Only Recommend Women Fashion Dresses...")
st.markdown("FRM: Second Model Recommend Men Women include also footwears and clothes.")
st.title("Product Recommendation Engine V-2.0")
st.markdown("This Engine Developed by <a href='https://github.com/datamind321'>DataMind Platform</a>",unsafe_allow_html=True)
st.subheader("if you have any query Contact us on : bme19rahul.r@invertisuniversity.ac.in")
st.markdown("More on : ")
st.markdown("[![Linkedin](https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg)](https://www.linkedin.com/in/rahul-rathour-402408231/)",unsafe_allow_html=True)
st.markdown("[![Instagram](https://img.icons8.com/color/1x/instagram-new.png)](https://instagram.com/_technical__mind?igshid=YmMyMTA2M2Y=)")