Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pyttsx3
|
| 2 |
+
import speech_recognition as sr
|
| 3 |
+
from playsound import playsound
|
| 4 |
+
import random
|
| 5 |
+
import datetime
|
| 6 |
+
hour = datetime.datetime.now().strftime('%H:%M')
|
| 7 |
+
#print(hour)
|
| 8 |
+
date = datetime.date.today().strftime('%d/%B/%Y')
|
| 9 |
+
#print(date)
|
| 10 |
+
date = date.split('/')
|
| 11 |
+
#print(date)
|
| 12 |
+
import webbrowser as wb
|
| 13 |
+
import tensorflow as tf
|
| 14 |
+
import numpy as np
|
| 15 |
+
import librosa
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
import seaborn as sns
|
| 18 |
+
sns.set()
|
| 19 |
+
from modules import commands_answers, load_agenda
|
| 20 |
+
commands = commands_answers.commands
|
| 21 |
+
answers = commands_answers.answers
|
| 22 |
+
#print(commands)
|
| 23 |
+
#print(answers)
|
| 24 |
+
|
| 25 |
+
my_name = 'Bob'
|
| 26 |
+
|
| 27 |
+
# MacOS
|
| 28 |
+
chrome_path = 'open -a /Applications/Google\ Chrome.app %s'
|
| 29 |
+
# Windows
|
| 30 |
+
#chrome_path = 'C:/Program Files/Google/Chrome/Application/chrome.exe %s'
|
| 31 |
+
# Linux
|
| 32 |
+
# chrome_path = '/usr/bin/google-chrome %s'
|
| 33 |
+
|
| 34 |
+
def search(sentence):
|
| 35 |
+
wb.get(chrome_path).open('https://www.google.com/search?q=' + sentence)
|
| 36 |
+
|
| 37 |
+
#search('python programming language')
|
| 38 |
+
|
| 39 |
+
MODEL_TYPES = ['EMOTION']
|
| 40 |
+
def load_model_by_name(model_type):
|
| 41 |
+
if model_type == MODEL_TYPES[0]:
|
| 42 |
+
model = tf.keras.models.load_model('models/speech_emotion_recognition.hdf5')
|
| 43 |
+
model_dict = list(['calm', 'happy', 'fear', 'nervous', 'neutral', 'disgust', 'surprise', 'sad'])
|
| 44 |
+
SAMPLE_RATE = 48000
|
| 45 |
+
return model, model_dict, SAMPLE_RATE
|
| 46 |
+
|
| 47 |
+
#print(load_model_by_name('EMOTION'))
|
| 48 |
+
#print(load_model_by_name('EMOTION')[0].summary())
|
| 49 |
+
|
| 50 |
+
model_type = 'EMOTION'
|
| 51 |
+
loaded_model = load_model_by_name(model_type)
|
| 52 |
+
|
| 53 |
+
def predict_sound(AUDIO, SAMPLE_RATE, plot = True):
|
| 54 |
+
results = []
|
| 55 |
+
wav_data, sample_rate = librosa.load(AUDIO, sr = SAMPLE_RATE)
|
| 56 |
+
#print(wav_data.shape)
|
| 57 |
+
#print(sample_rate)
|
| 58 |
+
#print(wav_data)
|
| 59 |
+
# ' librosa ' -> 'librosa'
|
| 60 |
+
# https://librosa.org/doc/main/generated/librosa.effects.trim.html
|
| 61 |
+
clip, index = librosa.effects.trim(wav_data, top_db=60, frame_length=512, hop_length=64)
|
| 62 |
+
splitted_audio_data = tf.signal.frame(clip, sample_rate, sample_rate, pad_end = True, pad_value = 0)
|
| 63 |
+
for i, data in enumerate(splitted_audio_data.numpy()):
|
| 64 |
+
#print('Audio split: ', i)
|
| 65 |
+
#print(data.shape)
|
| 66 |
+
#print(data)
|
| 67 |
+
# Mel frequency: https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
|
| 68 |
+
# PCA
|
| 69 |
+
mfccs_features = librosa.feature.mfcc(y = data, sr = sample_rate, n_mfcc=40)
|
| 70 |
+
#print(mfccs_features.shape)
|
| 71 |
+
#print(mfccs_features)
|
| 72 |
+
mfccs_scaled_features = np.mean(mfccs_features.T, axis = 0)
|
| 73 |
+
mfccs_scaled_features = mfccs_scaled_features.reshape(1, -1)
|
| 74 |
+
#print(mfccs_scaled_features.shape)
|
| 75 |
+
mfccs_scaled_features = mfccs_scaled_features[:, :, np.newaxis]
|
| 76 |
+
# batch
|
| 77 |
+
#print(mfccs_scaled_features.shape)
|
| 78 |
+
predictions = loaded_model[0].predict(mfccs_scaled_features)
|
| 79 |
+
#print(predictions)
|
| 80 |
+
#print(predictions.sum())
|
| 81 |
+
if plot:
|
| 82 |
+
plt.figure(figsize=(len(splitted_audio_data), 5))
|
| 83 |
+
plt.barh(loaded_model[1], predictions[0])
|
| 84 |
+
plt.tight_layout()
|
| 85 |
+
plt.show()
|
| 86 |
+
|
| 87 |
+
predictions = predictions.argmax(axis = 1)
|
| 88 |
+
#print(predictions)
|
| 89 |
+
predictions = predictions.astype(int).flatten()
|
| 90 |
+
predictions = loaded_model[1][predictions[0]]
|
| 91 |
+
results.append(predictions)
|
| 92 |
+
#print(results)
|
| 93 |
+
|
| 94 |
+
result_str = 'PART ' + str(i) + ': ' + str(predictions).upper()
|
| 95 |
+
#print(result_str)
|
| 96 |
+
|
| 97 |
+
count_results = [[results.count(x), x] for x in set(results)]
|
| 98 |
+
#print(count_results)
|
| 99 |
+
|
| 100 |
+
#print(max(count_results))
|
| 101 |
+
return max(count_results)
|
| 102 |
+
|
| 103 |
+
#playsound('sad.wav')
|
| 104 |
+
#predict_sound('sad.wav', loaded_model[2], plot=False)
|
| 105 |
+
|
| 106 |
+
def play_music_youtube(emotion):
|
| 107 |
+
play = False
|
| 108 |
+
if emotion == 'sad' or emotion == 'fear':
|
| 109 |
+
wb.get(chrome_path).open('https://www.youtube.com/watch?v=k32IPg4dbz0&ab_channel=Amelhorm%C3%BAsicainstrumental')
|
| 110 |
+
play = True
|
| 111 |
+
if emotion == 'nervous' or emotion == 'surprise':
|
| 112 |
+
wb.get(chrome_path).open('https://www.youtube.com/watch?v=pWjmpSD-ph0&ab_channel=CassioToledo')
|
| 113 |
+
play = True
|
| 114 |
+
return play
|
| 115 |
+
|
| 116 |
+
#play_music_youtube('sad')
|
| 117 |
+
#play_music_youtube('surprise')
|
| 118 |
+
#emotion = predict_sound('sad.wav', loaded_model[2], plot=False)
|
| 119 |
+
#print(emotion)
|
| 120 |
+
#play_music_youtube(emotion[1])
|
| 121 |
+
|
| 122 |
+
def speak(text):
|
| 123 |
+
engine = pyttsx3.init()
|
| 124 |
+
engine.setProperty('rate', 90) # number of words per second
|
| 125 |
+
engine.setProperty('volume', 1) # min: 0, max: 1
|
| 126 |
+
engine.say(text)
|
| 127 |
+
engine.runAndWait()
|
| 128 |
+
|
| 129 |
+
#speak("Testing the Assistant's Speech Synthesizer")
|
| 130 |
+
|
| 131 |
+
def listen_microphone():
|
| 132 |
+
microphone = sr.Recognizer()
|
| 133 |
+
with sr.Microphone() as source:
|
| 134 |
+
microphone.adjust_for_ambient_noise(source, duration=0.8)
|
| 135 |
+
print('Listening: ')
|
| 136 |
+
audio = microphone.listen(source)
|
| 137 |
+
with open('recordings/speech.wav', 'wb') as f:
|
| 138 |
+
f.write(audio.get_wav_data())
|
| 139 |
+
try:
|
| 140 |
+
# https://pypi.org/project/SpeechRecognition/
|
| 141 |
+
sentence = microphone.recognize_google(audio, language='en-US')
|
| 142 |
+
print('You said: ' + sentence)
|
| 143 |
+
except sr.UnknownValueError:
|
| 144 |
+
sentence = ''
|
| 145 |
+
print('Not understood')
|
| 146 |
+
return sentence
|
| 147 |
+
|
| 148 |
+
#playsound('recordings/speech.wav')
|
| 149 |
+
#listen_microphone()
|
| 150 |
+
|
| 151 |
+
def test_models():
|
| 152 |
+
audio_source = '/Users/jonesgranatyr/Documents/Ensino/IA Expert/Cursos/Virtual assistent/virtual_assistant/recordings/speech.wav'
|
| 153 |
+
prediction = predict_sound(audio_source, loaded_model[2], plot = False)
|
| 154 |
+
return prediction
|
| 155 |
+
|
| 156 |
+
#print(test_models())
|
| 157 |
+
|
| 158 |
+
playing = False
|
| 159 |
+
mode_control = False
|
| 160 |
+
print('[INFO] Ready to start!')
|
| 161 |
+
playsound('n1.mp3')
|
| 162 |
+
|
| 163 |
+
while (1):
|
| 164 |
+
result = listen_microphone()
|
| 165 |
+
|
| 166 |
+
if my_name in result:
|
| 167 |
+
result = str(result.split(my_name + ' ')[1])
|
| 168 |
+
result = result.lower()
|
| 169 |
+
#print('The assistant has been activacted!')
|
| 170 |
+
#print('After processing: ', result)
|
| 171 |
+
|
| 172 |
+
if result in commands[0]:
|
| 173 |
+
playsound('n2.mp3')
|
| 174 |
+
speak('I will read my list of functionalities: ' + answers[0])
|
| 175 |
+
|
| 176 |
+
if result in commands[3]:
|
| 177 |
+
playsound('n2.mp3')
|
| 178 |
+
speak('It is now ' + datetime.datetime.now().strftime('%H:%M'))
|
| 179 |
+
|
| 180 |
+
if result in commands[4]:
|
| 181 |
+
playsound('n2.mp3')
|
| 182 |
+
speak('Today is ' + date[0] + ' of ' + date[1])
|
| 183 |
+
|
| 184 |
+
if result in commands[1]:
|
| 185 |
+
playsound('n2.mp3')
|
| 186 |
+
speak('Please, tell me the activity!')
|
| 187 |
+
result = listen_microphone()
|
| 188 |
+
annotation = open('annotation.txt', mode='a+', encoding='utf-8')
|
| 189 |
+
annotation.write(result + '\n')
|
| 190 |
+
annotation.close()
|
| 191 |
+
speak(''.join(random.sample(answers[1], k = 1)))
|
| 192 |
+
speak('Want me to read the notes?')
|
| 193 |
+
result = listen_microphone()
|
| 194 |
+
if result == 'yes' or result == 'sure':
|
| 195 |
+
with open('annotation.txt') as file_source:
|
| 196 |
+
lines = file_source.readlines()
|
| 197 |
+
for line in lines:
|
| 198 |
+
speak(line)
|
| 199 |
+
else:
|
| 200 |
+
speak('Ok!')
|
| 201 |
+
|
| 202 |
+
if result in commands[2]:
|
| 203 |
+
playsound('n2.mp3')
|
| 204 |
+
speak(''.join(random.sample(answers[2], k = 1)))
|
| 205 |
+
result = listen_microphone()
|
| 206 |
+
search(result)
|
| 207 |
+
|
| 208 |
+
if result in commands[6]:
|
| 209 |
+
playsound('n2.mp3')
|
| 210 |
+
if load_agenda.load_agenda():
|
| 211 |
+
speak('These are the events for today:')
|
| 212 |
+
for i in range(len(load_agenda.load_agenda()[1])):
|
| 213 |
+
speak(load_agenda.load_agenda()[1][i] + ' ' + load_agenda.load_agenda()[0][i] + ' schedule for ' + str(load_agenda.load_agenda()[2][i]))
|
| 214 |
+
else:
|
| 215 |
+
speak('There are not events for today considering the current time!')
|
| 216 |
+
|
| 217 |
+
if result in commands[5]:
|
| 218 |
+
mode_control = True
|
| 219 |
+
playsound('n1.mp3')
|
| 220 |
+
speak('Emotion analysis mode has been activacted!')
|
| 221 |
+
|
| 222 |
+
if mode_control:
|
| 223 |
+
analyse = test_models()
|
| 224 |
+
print(f'I heard {analyse} in your voice!')
|
| 225 |
+
if not playing:
|
| 226 |
+
playing = play_music_youtube(analyse[1])
|
| 227 |
+
|
| 228 |
+
if result == 'turn off':
|
| 229 |
+
playsound('n2.mp3')
|
| 230 |
+
speak(''.join(random.sample(answers[4], k = 1)))
|
| 231 |
+
break
|
| 232 |
+
else:
|
| 233 |
+
playsound('n3.mp3')
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|