Spaces:
Runtime error
Runtime error
Upload 12 files
Browse files- model_median_frame.jpg +0 -0
- other_algorithms.py +129 -0
- performance_comparison.py +78 -0
- project1.py +121 -0
- project2.py +99 -0
- project3.py +254 -0
- quality_comparison.py +116 -0
- quality_comparison_results.py +11 -0
- report.csv +1707 -0
- temporal_median_filter.py +100 -0
- test.py +1 -0
- validator.py +96 -0
model_median_frame.jpg
ADDED
![]() |
other_algorithms.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import sys
|
4 |
+
from random import randint
|
5 |
+
|
6 |
+
TEXT_COLOR = (randint(0, 255), randint(0, 255), randint(0,255))
|
7 |
+
#print(TEXT_COLOR)
|
8 |
+
BORDER_COLOR = (randint(0, 255), randint(0, 255), randint(0,255))
|
9 |
+
#print(BORDER_COLOR)
|
10 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
11 |
+
VIDEO_SOURCE = 'videos/Traffic_4.mp4'
|
12 |
+
|
13 |
+
BGS_TYPES = ['GMG', 'MOG2', 'MOG', 'KNN', 'CNT']
|
14 |
+
#print(BGS_TYPES[1])
|
15 |
+
|
16 |
+
def get_kernel(KERNEL_TYPE):
|
17 |
+
if KERNEL_TYPE == 'dilation':
|
18 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
|
19 |
+
if KERNEL_TYPE == 'opening':
|
20 |
+
kernel = np.ones((3,3), np.uint8)
|
21 |
+
if KERNEL_TYPE == 'closing':
|
22 |
+
kernel = np.ones((3,3), np.uint8)
|
23 |
+
return kernel
|
24 |
+
|
25 |
+
#get_kernel('closing')
|
26 |
+
|
27 |
+
def get_filter(img, filter):
|
28 |
+
if filter == 'closing':
|
29 |
+
return cv2.morphologyEx(img, cv2.MORPH_CLOSE, get_kernel('closing'), iterations=2)
|
30 |
+
if filter == 'opening':
|
31 |
+
return cv2.morphologyEx(img, cv2.MORPH_OPEN, get_kernel('opening'), iterations = 2)
|
32 |
+
if filter == 'dilation':
|
33 |
+
return cv2.dilate(img, get_kernel('dilation'), iterations = 2)
|
34 |
+
if filter == 'combine':
|
35 |
+
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, get_kernel('closing'), iterations = 2)
|
36 |
+
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, get_kernel('opening'), iterations = 2)
|
37 |
+
dilation = cv2.dilate(opening, get_kernel('dilation'), iterations=2)
|
38 |
+
return dilation
|
39 |
+
|
40 |
+
def get_bgsubtractor(BGS_TYPE):
|
41 |
+
# https://docs.opencv.org/3.4/d1/d5c/classcv_1_1bgsegm_1_1BackgroundSubtractorGMG.html
|
42 |
+
if BGS_TYPE == 'GMG':
|
43 |
+
return cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames = 120,
|
44 |
+
decisionThreshold = 0.8)
|
45 |
+
# https://docs.opencv.org/3.4/d6/da7/classcv_1_1bgsegm_1_1BackgroundSubtractorMOG.html
|
46 |
+
if BGS_TYPE == 'MOG':
|
47 |
+
return cv2.bgsegm.createBackgroundSubtractorMOG(history = 200, nmixtures = 5,
|
48 |
+
backgroundRatio = 0.7, noiseSigma=0)
|
49 |
+
# https://docs.opencv.org/3.4/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
|
50 |
+
if BGS_TYPE == 'MOG2':
|
51 |
+
return cv2.createBackgroundSubtractorMOG2(history = 500, detectShadows = True,
|
52 |
+
varThreshold = 100)
|
53 |
+
# https://docs.opencv.org/3.4/db/d88/classcv_1_1BackgroundSubtractorKNN.html
|
54 |
+
if BGS_TYPE == 'KNN':
|
55 |
+
return cv2.createBackgroundSubtractorKNN(history = 500, dist2Threshold=400,
|
56 |
+
detectShadows = True)
|
57 |
+
# https://docs.opencv.org/3.4/de/dca/classcv_1_1bgsegm_1_1BackgroundSubtractorCNT.html
|
58 |
+
if BGS_TYPE == 'CNT':
|
59 |
+
return cv2.bgsegm.createBackgroundSubtractorCNT(minPixelStability=15,
|
60 |
+
useHistory = True,
|
61 |
+
maxPixelStability = 15*60,
|
62 |
+
isParallel=True)
|
63 |
+
print('Invalid detector!')
|
64 |
+
sys.exit(0)
|
65 |
+
|
66 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
67 |
+
# 0 = GMG, 1 = MOG2, 2 = MOG, 3 = KNN, 4 = CNT
|
68 |
+
bg_subtractor = get_bgsubtractor(BGS_TYPES[1])
|
69 |
+
BGS_TYPE = BGS_TYPES[1]
|
70 |
+
|
71 |
+
def main():
|
72 |
+
while cap.isOpened():
|
73 |
+
ok, frame = cap.read()
|
74 |
+
#print(ok)
|
75 |
+
#print(frame.shape)
|
76 |
+
|
77 |
+
frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5)
|
78 |
+
bg_mask = bg_subtractor.apply(frame)
|
79 |
+
|
80 |
+
fg_mask = get_filter(bg_mask, 'dilation')
|
81 |
+
fg_mask_closing = get_filter(bg_mask, 'closing')
|
82 |
+
fg_mask_opening = get_filter(bg_mask, 'opening')
|
83 |
+
fg_mask_combine = get_filter(bg_mask, 'combine')
|
84 |
+
#print(frame.shape)
|
85 |
+
|
86 |
+
# https://docs.opencv.org/master/d0/d86/tutorial_py_image_arithmetics.html
|
87 |
+
# https://www.pyimagesearch.com/2021/01/19/opencv-bitwise-and-or-xor-and-not/
|
88 |
+
res = cv2.bitwise_and(frame, frame, mask=fg_mask)
|
89 |
+
res_closing = cv2.bitwise_and(frame, frame, mask=fg_mask_closing)
|
90 |
+
res_opening = cv2.bitwise_and(frame, frame, mask=fg_mask_opening)
|
91 |
+
res_combine = cv2.bitwise_and(frame, frame, mask=fg_mask_combine)
|
92 |
+
|
93 |
+
cv2.putText(res_combine, 'Background subtractor: ' + BGS_TYPE, (10,50), FONT, 1, BORDER_COLOR, 3, cv2.LINE_AA)
|
94 |
+
cv2.putText(res_combine, 'Background subtractor: ' + BGS_TYPE, (10, 50), FONT, 1, BORDER_COLOR, 2, cv2.LINE_AA)
|
95 |
+
|
96 |
+
if not ok:
|
97 |
+
print('End processing the video')
|
98 |
+
break
|
99 |
+
|
100 |
+
if BGS_TYPE != 'MOG' and BGS_TYPE != 'GMG':
|
101 |
+
cv2.imshow('Background model', bg_subtractor.getBackgroundImage())
|
102 |
+
|
103 |
+
cv2.imshow('Frame', frame)
|
104 |
+
cv2.imshow('BG mask', bg_mask)
|
105 |
+
#cv2.imshow('Dilation', fg_mask)
|
106 |
+
cv2.imshow('Dilation final', res)
|
107 |
+
cv2.imshow('Closing final', res_closing)
|
108 |
+
cv2.imshow('Opening final', res_opening)
|
109 |
+
cv2.imshow('Combine final', res_combine)
|
110 |
+
|
111 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
112 |
+
break
|
113 |
+
|
114 |
+
main()
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
performance_comparison.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
from random import randint
|
4 |
+
|
5 |
+
TEXTCOLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
|
6 |
+
BORDERCOLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
|
7 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
8 |
+
VIDEO_SOURCE = "videos/people.mp4"
|
9 |
+
BGS_TYPES = ["GMG", "MOG", "MOG2", "KNN", "CNT"]
|
10 |
+
BGS_TYPE = BGS_TYPES[4]
|
11 |
+
# GMG 38
|
12 |
+
# MOG 28
|
13 |
+
# MOG2 18
|
14 |
+
# KNN 16
|
15 |
+
# CNT 15
|
16 |
+
|
17 |
+
def getBGSubtractor(BGS_TYPE):
|
18 |
+
if BGS_TYPE == "GMG":
|
19 |
+
return cv2.bgsegm.createBackgroundSubtractorGMG()
|
20 |
+
if BGS_TYPE == "MOG":
|
21 |
+
return cv2.bgsegm.createBackgroundSubtractorMOG()
|
22 |
+
if BGS_TYPE == "MOG2":
|
23 |
+
return cv2.createBackgroundSubtractorMOG2()
|
24 |
+
if BGS_TYPE == "KNN":
|
25 |
+
return cv2.createBackgroundSubtractorKNN()
|
26 |
+
if BGS_TYPE == "CNT":
|
27 |
+
return cv2.bgsegm.createBackgroundSubtractorCNT()
|
28 |
+
print("Unknown createBackgroundSubtractor type")
|
29 |
+
sys.exit(1)
|
30 |
+
|
31 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
32 |
+
bg_subtractor = getBGSubtractor(BGS_TYPE)
|
33 |
+
e1 = cv2.getTickCount()
|
34 |
+
|
35 |
+
def main():
|
36 |
+
frame_number = -1
|
37 |
+
while (cap.isOpened):
|
38 |
+
ok, frame = cap.read()
|
39 |
+
|
40 |
+
if not ok:
|
41 |
+
print('Finish processing the video')
|
42 |
+
break
|
43 |
+
|
44 |
+
frame_number += 1
|
45 |
+
|
46 |
+
bg_mask = bg_subtractor.apply(frame)
|
47 |
+
res = cv2.bitwise_and(frame, frame, mask=bg_mask)
|
48 |
+
|
49 |
+
cv2.imshow('Frame', frame)
|
50 |
+
cv2.imshow('Mask', res)
|
51 |
+
|
52 |
+
if cv2.waitKey(1) & 0xFF == ord("q") or frame_number > 250:
|
53 |
+
break
|
54 |
+
|
55 |
+
e2 = cv2.getTickCount()
|
56 |
+
t = (e2 - e1) / cv2.getTickFrequency()
|
57 |
+
print(t)
|
58 |
+
|
59 |
+
main()
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
project1.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import sys
|
4 |
+
|
5 |
+
TEXT_COLOR = (0, 255, 0)
|
6 |
+
TRACKER_COLOR = (255, 0, 0)
|
7 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
8 |
+
VIDEO_SOURCE = "videos/Animal_1.mp4"
|
9 |
+
|
10 |
+
BGS_TYPES = ["GMG", "MOG", "MOG2", "KNN", "CNT"]
|
11 |
+
BGS_TYPE = BGS_TYPES[2]
|
12 |
+
|
13 |
+
def getKernel(KERNEL_TYPE):
|
14 |
+
if KERNEL_TYPE == "dilation":
|
15 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
16 |
+
if KERNEL_TYPE == "opening":
|
17 |
+
kernel = np.ones((3, 3), np.uint8)
|
18 |
+
if KERNEL_TYPE == "closing":
|
19 |
+
kernel = np.ones((3, 3), np.uint8)
|
20 |
+
|
21 |
+
return kernel
|
22 |
+
|
23 |
+
def getFilter(img, filter):
|
24 |
+
if filter == 'closing':
|
25 |
+
return cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
|
26 |
+
|
27 |
+
if filter == 'opening':
|
28 |
+
return cv2.morphologyEx(img, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
|
29 |
+
|
30 |
+
if filter == 'dilation':
|
31 |
+
return cv2.dilate(img, getKernel("dilation"), iterations=2)
|
32 |
+
|
33 |
+
if filter == 'combine':
|
34 |
+
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
|
35 |
+
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
|
36 |
+
dilation = cv2.dilate(opening, getKernel("dilation"), iterations=2)
|
37 |
+
|
38 |
+
return dilation
|
39 |
+
|
40 |
+
def getBGSubtractor(BGS_TYPE):
|
41 |
+
if BGS_TYPE == "GMG":
|
42 |
+
return cv2.bgsegm.createBackgroundSubtractorGMG()
|
43 |
+
if BGS_TYPE == "MOG":
|
44 |
+
return cv2.bgsegm.createBackgroundSubtractorMOG()
|
45 |
+
if BGS_TYPE == "MOG2":
|
46 |
+
return cv2.createBackgroundSubtractorMOG2()
|
47 |
+
if BGS_TYPE == "KNN":
|
48 |
+
return cv2.createBackgroundSubtractorKNN()
|
49 |
+
if BGS_TYPE == "CNT":
|
50 |
+
return cv2.bgsegm.createBackgroundSubtractorCNT()
|
51 |
+
print("Invalid detector")
|
52 |
+
sys.exit(1)
|
53 |
+
|
54 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
55 |
+
bg_subtractor = getBGSubtractor(BGS_TYPE)
|
56 |
+
minArea = 250
|
57 |
+
|
58 |
+
def main():
|
59 |
+
while (cap.isOpened):
|
60 |
+
ok, frame = cap.read()
|
61 |
+
if not ok:
|
62 |
+
print("Finished processing the video")
|
63 |
+
break
|
64 |
+
|
65 |
+
frame = cv2.resize(frame, (0, 0), fx=0.50, fy=0.50)
|
66 |
+
|
67 |
+
bg_mask = bg_subtractor.apply(frame)
|
68 |
+
bg_mask = getFilter(bg_mask, 'combine')
|
69 |
+
bg_mask = cv2.medianBlur(bg_mask, 5)
|
70 |
+
|
71 |
+
(contours, hierarchy) = cv2.findContours(bg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
72 |
+
#print(contours)
|
73 |
+
for cnt in contours:
|
74 |
+
area = cv2.contourArea(cnt)
|
75 |
+
if area >= minArea:
|
76 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
77 |
+
cv2.rectangle(frame, (10,30), (250,55), (255,0,0), -1)
|
78 |
+
cv2.putText(frame, 'Motion detected!', (10,50), FONT, 0.8, TEXT_COLOR, 2, cv2.LINE_AA)
|
79 |
+
|
80 |
+
#cv2.drawContours(frame, cnt, -1, TRACKER_COLOR, 3)
|
81 |
+
#cv2.drawContours(frame, cnt, -1, (255,255,255), 1)
|
82 |
+
#cv2.rectangle(frame, (x,y), (x+w, y+h), TRACKER_COLOR, 3)
|
83 |
+
#cv2.rectangle(frame, (x, y), (x + w, y + h), (255,255,255), 1)
|
84 |
+
|
85 |
+
# https://www.pyimagesearch.com/2016/03/07/transparent-overlays-with-opencv/
|
86 |
+
for alpha in np.arange(0.8, 1.1, 0.9)[::-1]:
|
87 |
+
frame_copy = frame.copy()
|
88 |
+
output = frame.copy()
|
89 |
+
cv2.drawContours(frame_copy, [cnt], -1, TRACKER_COLOR, -1)
|
90 |
+
frame = cv2.addWeighted(frame_copy, alpha, output, 1 - alpha, 0, output)
|
91 |
+
|
92 |
+
|
93 |
+
result = cv2.bitwise_and(frame, frame, mask=bg_mask)
|
94 |
+
cv2.imshow('Frame', frame)
|
95 |
+
cv2.imshow('Mask', result)
|
96 |
+
|
97 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
98 |
+
break
|
99 |
+
|
100 |
+
main()
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
project2.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import sys
|
4 |
+
|
5 |
+
TEXT_COLOR = (24, 201, 255)
|
6 |
+
TRACKER_COLOR = (255, 128, 0)
|
7 |
+
WARNING_COLOR = (24, 201, 255)
|
8 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
9 |
+
VIDEO_SOURCE = "videos/Pedestrians_2.mp4"
|
10 |
+
|
11 |
+
BGS_TYPES = ["GMG", "MOG", "MOG2", "KNN", "CNT"]
|
12 |
+
BGS_TYPE = BGS_TYPES[0]
|
13 |
+
|
14 |
+
def getKernel(KERNEL_TYPE):
|
15 |
+
if KERNEL_TYPE == "dilation":
|
16 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
|
17 |
+
if KERNEL_TYPE == "opening":
|
18 |
+
kernel = np.ones((3, 5), np.uint8)
|
19 |
+
if KERNEL_TYPE == "closing":
|
20 |
+
kernel = np.ones((11, 11), np.uint8)
|
21 |
+
|
22 |
+
return kernel
|
23 |
+
|
24 |
+
def getFilter(img, filter):
|
25 |
+
if filter == 'closing':
|
26 |
+
return cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
|
27 |
+
|
28 |
+
if filter == 'opening':
|
29 |
+
return cv2.morphologyEx(img, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
|
30 |
+
|
31 |
+
if filter == 'dilation':
|
32 |
+
return cv2.dilate(img, getKernel("dilation"), iterations=2)
|
33 |
+
|
34 |
+
if filter == 'combine':
|
35 |
+
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
|
36 |
+
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
|
37 |
+
dilation = cv2.dilate(opening, getKernel("dilation"), iterations=2)
|
38 |
+
|
39 |
+
return dilation
|
40 |
+
|
41 |
+
def getBGSubtractor(BGS_TYPE):
|
42 |
+
if BGS_TYPE == "GMG":
|
43 |
+
return cv2.bgsegm.createBackgroundSubtractorGMG()
|
44 |
+
if BGS_TYPE == "MOG":
|
45 |
+
return cv2.bgsegm.createBackgroundSubtractorMOG()
|
46 |
+
if BGS_TYPE == "MOG2":
|
47 |
+
return cv2.createBackgroundSubtractorMOG2(detectShadows=False, varThreshold=100)
|
48 |
+
if BGS_TYPE == "KNN":
|
49 |
+
return cv2.createBackgroundSubtractorKNN()
|
50 |
+
if BGS_TYPE == "CNT":
|
51 |
+
return cv2.bgsegm.createBackgroundSubtractorCNT()
|
52 |
+
print("Invalid detector")
|
53 |
+
sys.exit(1)
|
54 |
+
|
55 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
56 |
+
bg_subtractor = getBGSubtractor(BGS_TYPE)
|
57 |
+
minArea = 400
|
58 |
+
maxArea = 3000
|
59 |
+
|
60 |
+
def main():
|
61 |
+
while (cap.isOpened):
|
62 |
+
ok, frame = cap.read()
|
63 |
+
|
64 |
+
if not ok:
|
65 |
+
print("Finished processing the video")
|
66 |
+
break
|
67 |
+
|
68 |
+
frame = cv2.resize(frame, (0, 0), fx=0.50, fy=0.50)
|
69 |
+
bg_mask = bg_subtractor.apply(frame)
|
70 |
+
bg_mask = getFilter(bg_mask, 'combine')
|
71 |
+
bg_mask = cv2.medianBlur(bg_mask, 5)
|
72 |
+
(contours, hierarchy) = cv2.findContours(bg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
73 |
+
for cnt in contours:
|
74 |
+
area = cv2.contourArea(cnt)
|
75 |
+
if area >= minArea:
|
76 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
77 |
+
cv2.drawContours(frame, cnt, 1, TRACKER_COLOR, 10)
|
78 |
+
cv2.drawContours(frame, cnt, 1, (255,255,255), 1)
|
79 |
+
|
80 |
+
if area >= maxArea:
|
81 |
+
cv2.rectangle(frame, (x,y), (x + 120, y - 13), (49,49,49), -1)
|
82 |
+
cv2.putText(frame, 'Warning', (x, y - 2), FONT, 0.4, (255,255,255), 1, cv2.LINE_AA)
|
83 |
+
cv2.drawContours(frame, [cnt], -1, WARNING_COLOR, 2)
|
84 |
+
cv2.drawContours(frame, [cnt], -1, WARNING_COLOR, 1)
|
85 |
+
|
86 |
+
res = cv2.bitwise_and(frame, frame, mask=bg_mask)
|
87 |
+
|
88 |
+
cv2.putText(res, BGS_TYPE, (10,50), FONT, 1, (255,255,255), 3, cv2.LINE_AA)
|
89 |
+
cv2.putText(res, BGS_TYPE, (10, 50), FONT, 1, TEXT_COLOR, 2, cv2.LINE_AA)
|
90 |
+
|
91 |
+
cv2.imshow('Frame', frame)
|
92 |
+
cv2.imshow('Mask', res)
|
93 |
+
|
94 |
+
|
95 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
96 |
+
break
|
97 |
+
|
98 |
+
main()
|
99 |
+
|
project3.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import sys
|
4 |
+
import time
|
5 |
+
import validator
|
6 |
+
from random import randint
|
7 |
+
|
8 |
+
LINE_IN_COLOR = (64, 255, 0)
|
9 |
+
LINE_OUT_COLOR = (0, 0, 255)
|
10 |
+
BOUNDING_BOX_COLOR = (255, 128, 0)
|
11 |
+
TRACKER_COLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
|
12 |
+
CENTROID_COLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
|
13 |
+
TEXT_COLOR = (randint(0, 255), randint(0, 255), randint(0, 255))
|
14 |
+
TEXT_POSITION_BGS = (10, 50)
|
15 |
+
TEXT_POSITION_COUNT_CARS = (10, 100)
|
16 |
+
TEXT_POSITION_COUNT_TRUCKS = (10, 150)
|
17 |
+
TEXT_SIZE = 1.2
|
18 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
19 |
+
SAVE_IMAGE = True
|
20 |
+
IMAGE_DIR = "./vehicles"
|
21 |
+
VIDEO_SOURCE = "videos/Traffic_3.mp4"
|
22 |
+
VIDEO_OUT = "videos/results/result_traffic.avi"
|
23 |
+
|
24 |
+
BGS_TYPES = ["GMG", "MOG", "MOG2", "KNN", "CNT"]
|
25 |
+
BGS_TYPE = BGS_TYPES[2]
|
26 |
+
|
27 |
+
def getKernel(KERNEL_TYPE):
|
28 |
+
if KERNEL_TYPE == "dilation":
|
29 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
|
30 |
+
if KERNEL_TYPE == "opening":
|
31 |
+
kernel = np.ones((3, 3), np.uint8)
|
32 |
+
if KERNEL_TYPE == "closing":
|
33 |
+
kernel = np.ones((11, 11), np.uint8)
|
34 |
+
|
35 |
+
return kernel
|
36 |
+
|
37 |
+
def getFilter(img, filter):
|
38 |
+
if filter == 'closing':
|
39 |
+
return cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
|
40 |
+
|
41 |
+
if filter == 'opening':
|
42 |
+
return cv2.morphologyEx(img, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
|
43 |
+
|
44 |
+
if filter == 'dilation':
|
45 |
+
return cv2.dilate(img, getKernel("dilation"), iterations=2)
|
46 |
+
|
47 |
+
if filter == 'combine':
|
48 |
+
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, getKernel("closing"), iterations=2)
|
49 |
+
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, getKernel("opening"), iterations=2)
|
50 |
+
dilation = cv2.dilate(opening, getKernel("dilation"), iterations=2)
|
51 |
+
|
52 |
+
return dilation
|
53 |
+
|
54 |
+
def getBGSubtractor(BGS_TYPE):
|
55 |
+
if BGS_TYPE == "GMG":
|
56 |
+
return cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=120, decisionThreshold=.8)
|
57 |
+
if BGS_TYPE == "MOG":
|
58 |
+
return cv2.bgsegm.createBackgroundSubtractorMOG(history=200, nmixtures=5, backgroundRatio=.7, noiseSigma=0)
|
59 |
+
if BGS_TYPE == "MOG2":
|
60 |
+
return cv2.createBackgroundSubtractorMOG2(history=50, detectShadows=False, varThreshold=200)
|
61 |
+
if BGS_TYPE == "KNN":
|
62 |
+
return cv2.createBackgroundSubtractorKNN(history=100, dist2Threshold=400, detectShadows=True)
|
63 |
+
if BGS_TYPE == "CNT":
|
64 |
+
return cv2.bgsegm.createBackgroundSubtractorCNT(minPixelStability=15, useHistory=True,
|
65 |
+
maxPixelStability=15 * 60, isParallel=True)
|
66 |
+
print("Invalid detector")
|
67 |
+
sys.exit(1)
|
68 |
+
|
69 |
+
def getCentroid(x, y, w, h):
|
70 |
+
x1 = int(w / 2)
|
71 |
+
y1 = int(h / 2)
|
72 |
+
cx = x + x1
|
73 |
+
cy = y + y1
|
74 |
+
return (cx, cy)
|
75 |
+
|
76 |
+
#print(getCentroid(50, 100, 100, 100))
|
77 |
+
|
78 |
+
def save_frame(frame, file_name, flip=True):
|
79 |
+
if flip: # BGR -> RGB
|
80 |
+
cv2.imwrite(file_name, np.flip(frame, 2))
|
81 |
+
else:
|
82 |
+
cv2.imwrite(file_name, frame)
|
83 |
+
|
84 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
85 |
+
hasFrame, frame = cap.read()
|
86 |
+
|
87 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
88 |
+
writer_video = cv2.VideoWriter(VIDEO_OUT, fourcc, 25, (frame.shape[1], frame.shape[0]), True)
|
89 |
+
|
90 |
+
# ROI
|
91 |
+
bbox = cv2.selectROI(frame, False)
|
92 |
+
#print(bbox)
|
93 |
+
(w1, h1, w2, h2) = bbox
|
94 |
+
#print(w1, h1, w2, h2)
|
95 |
+
|
96 |
+
frameArea = h2 * w2
|
97 |
+
#print(frameArea)
|
98 |
+
minArea = int(frameArea / 250)
|
99 |
+
#print(minArea)
|
100 |
+
maxArea = 15000
|
101 |
+
|
102 |
+
line_IN = int(h1)
|
103 |
+
line_OUT = int(h2 - 20)
|
104 |
+
#print(line_IN, line_OUT)
|
105 |
+
|
106 |
+
DOWN_limit = int(h1 / 4)
|
107 |
+
print('Down IN limit Y', str(DOWN_limit))
|
108 |
+
print('Down OUT limit Y', str(line_OUT))
|
109 |
+
|
110 |
+
bg_subtractor = getBGSubtractor(BGS_TYPE)
|
111 |
+
|
112 |
+
def main():
|
113 |
+
frame_number = -1
|
114 |
+
cnt_cars, cnt_trucks = 0, 0
|
115 |
+
objects = []
|
116 |
+
max_p_age = 2
|
117 |
+
pid = 1
|
118 |
+
while (cap.isOpened()):
|
119 |
+
ok, frame = cap.read()
|
120 |
+
if not ok:
|
121 |
+
print("Finished processing the video")
|
122 |
+
break
|
123 |
+
|
124 |
+
roi = frame[h1:h1 + h2, w1:w1 + w2]
|
125 |
+
|
126 |
+
for i in objects:
|
127 |
+
#print('test')
|
128 |
+
i.age_one()
|
129 |
+
|
130 |
+
frame_number += 1
|
131 |
+
bg_mask = bg_subtractor.apply(roi)
|
132 |
+
bg_mask = getFilter(bg_mask,'combine')
|
133 |
+
(contours, hierarchy) = cv2.findContours(bg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
134 |
+
for cnt in contours:
|
135 |
+
area = cv2.contourArea(cnt)
|
136 |
+
|
137 |
+
# Counting the cars
|
138 |
+
if area > minArea and area <= maxArea:
|
139 |
+
x,y,w,h = cv2.boundingRect(cnt)
|
140 |
+
centroid = getCentroid(x, y, w, h)
|
141 |
+
cx = centroid[0]
|
142 |
+
cy = centroid[1]
|
143 |
+
new = True
|
144 |
+
cv2.rectangle(roi, (x,y), (x + 50, y - 13), TRACKER_COLOR, -1)
|
145 |
+
cv2.putText(roi, 'CAR', (x, y-2), FONT, 0.5, (255,255,255), 1, cv2.LINE_AA)
|
146 |
+
for i in objects:
|
147 |
+
if abs(x - i.getX()) <= w and abs(y - i.getY()) <= h:
|
148 |
+
new = False
|
149 |
+
i.updateCoords(cx, cy)
|
150 |
+
|
151 |
+
if i.going_DOWN(DOWN_limit) == True:
|
152 |
+
cnt_cars += 1
|
153 |
+
if SAVE_IMAGE:
|
154 |
+
save_frame(roi, IMAGE_DIR + '/car_DOWN_%04d.png' % frame_number)
|
155 |
+
print('ID:', i.getId(), ' passed by the road in', time.strftime('%c'))
|
156 |
+
break
|
157 |
+
if i.getState() == '1':
|
158 |
+
if i.getDir() == 'down' and i.getY() > line_OUT:
|
159 |
+
i.setDone()
|
160 |
+
if i.timedOut():
|
161 |
+
index = objects.index(i)
|
162 |
+
objects.pop(index)
|
163 |
+
del i
|
164 |
+
if new == True:
|
165 |
+
p = validator.MyValidator(pid, cx, cy, max_p_age)
|
166 |
+
objects.append(p)
|
167 |
+
pid += 1
|
168 |
+
cv2.circle(roi, (cx, cy), 5, CENTROID_COLOR, -1)
|
169 |
+
|
170 |
+
# Counting the trucks
|
171 |
+
elif area >= maxArea:
|
172 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
173 |
+
centroid = getCentroid(x, y, w, h)
|
174 |
+
cx = centroid[0]
|
175 |
+
cy = centroid[1]
|
176 |
+
|
177 |
+
new = True
|
178 |
+
|
179 |
+
cv2.rectangle(roi, (x, y), (x + 50, y - 13), TRACKER_COLOR, -1)
|
180 |
+
cv2.putText(roi, 'TRUCK', (x, y - 2), FONT, .5, (255, 255, 255), 1, cv2.LINE_AA)
|
181 |
+
|
182 |
+
for i in objects:
|
183 |
+
if abs(x - i.getX()) <= w and abs(y - i.getY()) <= h:
|
184 |
+
new = False
|
185 |
+
i.updateCoords(cx, cy)
|
186 |
+
|
187 |
+
if i.going_DOWN(DOWN_limit) == True:
|
188 |
+
cnt_trucks += 1
|
189 |
+
if SAVE_IMAGE:
|
190 |
+
save_frame(roi, IMAGE_DIR + "/truck_DOWN_%04d.png" % frame_number, flip=False)
|
191 |
+
print("ID:", i.getId(), 'passed by the road', time.strftime("%c"))
|
192 |
+
break
|
193 |
+
if i.getState() == '1':
|
194 |
+
if i.getDir() == 'down' and i.getY() > line_OUT:
|
195 |
+
i.setDone()
|
196 |
+
if i.timedOut():
|
197 |
+
index = objects.index(i)
|
198 |
+
objects.pop(index)
|
199 |
+
del i
|
200 |
+
if new == True:
|
201 |
+
p = validator.MyValidator(pid, cx, cy, max_p_age)
|
202 |
+
objects.append(p)
|
203 |
+
pid += 1
|
204 |
+
cv2.circle(roi, (cx, cy), 5, CENTROID_COLOR, -1)
|
205 |
+
|
206 |
+
for i in objects:
|
207 |
+
cv2.putText(roi, str(i.getId()), (i.getX(), i.getY()), FONT, 0.3, TEXT_COLOR, 1, cv2.LINE_AA)
|
208 |
+
|
209 |
+
str_cars = 'Cars: ' + str(cnt_cars)
|
210 |
+
str_trucks = 'Trucks: ' + str(cnt_trucks)
|
211 |
+
|
212 |
+
frame = cv2.line(frame, (w1, line_IN), (w1 + w2, line_IN), LINE_IN_COLOR, 2)
|
213 |
+
frame = cv2.line(frame, (w1, h1 + line_OUT), (w1 + w2, h1 + line_OUT), LINE_OUT_COLOR, 2)
|
214 |
+
|
215 |
+
cv2.putText(frame, str_cars, TEXT_POSITION_COUNT_CARS, FONT, 1, (255,255,255), 3, cv2.LINE_AA)
|
216 |
+
cv2.putText(frame, str_cars, TEXT_POSITION_COUNT_CARS, FONT, 1, (232, 162, 0), 2, cv2.LINE_AA)
|
217 |
+
|
218 |
+
cv2.putText(frame, str_trucks, TEXT_POSITION_COUNT_TRUCKS, FONT, 1, (255, 255, 255), 3, cv2.LINE_AA)
|
219 |
+
cv2.putText(frame, str_trucks, TEXT_POSITION_COUNT_TRUCKS, FONT, 1, (232, 162, 0), 2, cv2.LINE_AA)
|
220 |
+
|
221 |
+
cv2.putText(frame, 'Background Subtractor: ' + BGS_TYPE, TEXT_POSITION_BGS, FONT, TEXT_SIZE, (255, 255, 255), 3,cv2.LINE_AA)
|
222 |
+
cv2.putText(frame, 'Background Subtractor: ' + BGS_TYPE, TEXT_POSITION_BGS, FONT, TEXT_SIZE, (128, 0, 255), 2,
|
223 |
+
cv2.LINE_AA)
|
224 |
+
|
225 |
+
|
226 |
+
cv2.imshow('Frame', frame)
|
227 |
+
cv2.imshow('Mask', bg_mask)
|
228 |
+
|
229 |
+
writer_video.write(frame)
|
230 |
+
|
231 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
232 |
+
break
|
233 |
+
|
234 |
+
cap.release()
|
235 |
+
cv2.destroyAllWindows()
|
236 |
+
|
237 |
+
main()
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
quality_comparison.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import sys
|
4 |
+
from random import randint
|
5 |
+
import csv
|
6 |
+
|
7 |
+
fp = open('report.csv', mode='w')
|
8 |
+
writer = csv.DictWriter(fp, fieldnames=['Frame', 'Pixel Count'])
|
9 |
+
writer.writeheader()
|
10 |
+
|
11 |
+
TEXT_COLOR = (randint(0, 255), randint(0,255), randint(0,255))
|
12 |
+
BORDER_COLOR = (randint(0, 255), randint(0,255), randint(0,255))
|
13 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX
|
14 |
+
TEXT_SIZE = 1.2
|
15 |
+
VIDEO_SOURCE = "videos/people.mp4"
|
16 |
+
TITLE_TEXT_POSITION = (100, 40)
|
17 |
+
|
18 |
+
BGS_TYPES = ["GMG", "MOG", "MOG2", "KNN", "CNT"]
|
19 |
+
|
20 |
+
def getBGSubtractor(BGS_TYPE):
|
21 |
+
if BGS_TYPE == "GMG":
|
22 |
+
return cv2.bgsegm.createBackgroundSubtractorGMG()
|
23 |
+
if BGS_TYPE == "MOG":
|
24 |
+
return cv2.bgsegm.createBackgroundSubtractorMOG()
|
25 |
+
if BGS_TYPE == "MOG2":
|
26 |
+
return cv2.createBackgroundSubtractorMOG2()
|
27 |
+
if BGS_TYPE == "KNN":
|
28 |
+
return cv2.createBackgroundSubtractorKNN()
|
29 |
+
if BGS_TYPE == "CNT":
|
30 |
+
return cv2.bgsegm.createBackgroundSubtractorCNT()
|
31 |
+
print("Invalid detector")
|
32 |
+
sys.exit(1)
|
33 |
+
|
34 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
35 |
+
|
36 |
+
bg_subtractor = []
|
37 |
+
for i, a in enumerate(BGS_TYPES):
|
38 |
+
#print(i, a)
|
39 |
+
bg_subtractor.append(getBGSubtractor(a))
|
40 |
+
|
41 |
+
#print(bg_subtractor)
|
42 |
+
|
43 |
+
|
44 |
+
def main():
|
45 |
+
framecount = 0
|
46 |
+
while cap.isOpened():
|
47 |
+
ok, frame = cap.read()
|
48 |
+
#print(ok)
|
49 |
+
|
50 |
+
if not ok:
|
51 |
+
print('Finished processing the video')
|
52 |
+
break
|
53 |
+
|
54 |
+
framecount += 1
|
55 |
+
frame = cv2.resize(frame, (0, 0), fx=0.20, fy=0.20)
|
56 |
+
|
57 |
+
gmg = bg_subtractor[0].apply(frame)
|
58 |
+
mog = bg_subtractor[1].apply(frame)
|
59 |
+
mog2 = bg_subtractor[2].apply(frame)
|
60 |
+
knn = bg_subtractor[3].apply(frame)
|
61 |
+
cnt = bg_subtractor[4].apply(frame)
|
62 |
+
|
63 |
+
gmg_count = np.count_nonzero(gmg)
|
64 |
+
mog_count = np.count_nonzero(mog)
|
65 |
+
mog2_count = np.count_nonzero(mog2)
|
66 |
+
knn_count = np.count_nonzero(knn)
|
67 |
+
cnt_count = np.count_nonzero(cnt)
|
68 |
+
|
69 |
+
writer.writerow({'Frame': 'MOG', 'Pixel Count': mog_count})
|
70 |
+
writer.writerow({'Frame': 'MOG2', 'Pixel Count': mog2_count})
|
71 |
+
writer.writerow({'Frame': 'GMG', 'Pixel Count': gmg_count})
|
72 |
+
writer.writerow({'Frame': 'KNN', 'Pixel Count': knn_count})
|
73 |
+
writer.writerow({'Frame': 'CNT', 'Pixel Count': cnt_count})
|
74 |
+
|
75 |
+
cv2.putText(mog, 'MOG', TITLE_TEXT_POSITION, FONT, TEXT_SIZE, TEXT_COLOR, 2, cv2.LINE_AA)
|
76 |
+
cv2.putText(mog2, 'MOG2', TITLE_TEXT_POSITION, FONT, TEXT_SIZE, TEXT_COLOR, 2, cv2.LINE_AA)
|
77 |
+
cv2.putText(gmg, 'GMG', TITLE_TEXT_POSITION, FONT, TEXT_SIZE, TEXT_COLOR, 2, cv2.LINE_AA)
|
78 |
+
cv2.putText(knn, 'KNN', TITLE_TEXT_POSITION, FONT, TEXT_SIZE, TEXT_COLOR, 2, cv2.LINE_AA)
|
79 |
+
cv2.putText(cnt, 'CNT', TITLE_TEXT_POSITION, FONT, TEXT_SIZE, TEXT_COLOR, 2, cv2.LINE_AA)
|
80 |
+
|
81 |
+
cv2.imshow('Original', frame)
|
82 |
+
cv2.imshow('MOG', mog)
|
83 |
+
cv2.imshow('MOG2', mog2)
|
84 |
+
cv2.imshow('KNN', knn)
|
85 |
+
cv2.imshow('CNT', cnt)
|
86 |
+
|
87 |
+
cv2.moveWindow('Original', 0, 0)
|
88 |
+
cv2.moveWindow('MOG', 0, 250)
|
89 |
+
cv2.moveWindow('KNN', 0, 500)
|
90 |
+
cv2.moveWindow('GMG', 719, 0)
|
91 |
+
cv2.moveWindow('MOG2', 719, 250)
|
92 |
+
cv2.moveWindow('CNT', 719, 500)
|
93 |
+
|
94 |
+
k = cv2.waitKey(0) & 0xff
|
95 |
+
if k == 27: # ESC
|
96 |
+
break
|
97 |
+
|
98 |
+
|
99 |
+
main()
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
quality_comparison_results.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
evaluation = pd.read_csv('report.csv')
|
5 |
+
#print(evaluation)
|
6 |
+
|
7 |
+
evaluation_results = evaluation.groupby(['Frame']).sum()
|
8 |
+
print(evaluation_results)
|
9 |
+
|
10 |
+
evaluation_results.plot.bar()
|
11 |
+
plt.show()
|
report.csv
ADDED
@@ -0,0 +1,1707 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Frame,Pixel Count
|
2 |
+
MOG,0
|
3 |
+
MOG2,82944
|
4 |
+
GMG,0
|
5 |
+
KNN,82944
|
6 |
+
CNT,82944
|
7 |
+
|
8 |
+
MOG,1106
|
9 |
+
MOG2,5550
|
10 |
+
GMG,0
|
11 |
+
KNN,82944
|
12 |
+
CNT,82944
|
13 |
+
MOG,1507
|
14 |
+
MOG2,2984
|
15 |
+
GMG,0
|
16 |
+
KNN,82928
|
17 |
+
CNT,82944
|
18 |
+
MOG,1036
|
19 |
+
MOG2,2826
|
20 |
+
GMG,0
|
21 |
+
KNN,82869
|
22 |
+
CNT,82944
|
23 |
+
MOG,1131
|
24 |
+
MOG2,2634
|
25 |
+
GMG,0
|
26 |
+
KNN,7587
|
27 |
+
CNT,82944
|
28 |
+
MOG,1538
|
29 |
+
MOG2,2814
|
30 |
+
GMG,0
|
31 |
+
KNN,6100
|
32 |
+
CNT,82944
|
33 |
+
MOG,1617
|
34 |
+
MOG2,2536
|
35 |
+
GMG,0
|
36 |
+
KNN,5688
|
37 |
+
CNT,82944
|
38 |
+
MOG,2086
|
39 |
+
MOG2,4659
|
40 |
+
GMG,0
|
41 |
+
KNN,6683
|
42 |
+
CNT,82944
|
43 |
+
MOG,2025
|
44 |
+
MOG2,2656
|
45 |
+
GMG,0
|
46 |
+
KNN,6585
|
47 |
+
CNT,82944
|
48 |
+
MOG,2260
|
49 |
+
MOG2,2671
|
50 |
+
GMG,0
|
51 |
+
KNN,6328
|
52 |
+
CNT,82944
|
53 |
+
MOG,2255
|
54 |
+
MOG2,3642
|
55 |
+
GMG,0
|
56 |
+
KNN,7224
|
57 |
+
CNT,82944
|
58 |
+
MOG,1803
|
59 |
+
MOG2,3770
|
60 |
+
GMG,0
|
61 |
+
KNN,7548
|
62 |
+
CNT,82944
|
63 |
+
MOG,2563
|
64 |
+
MOG2,5775
|
65 |
+
GMG,0
|
66 |
+
KNN,9009
|
67 |
+
CNT,82944
|
68 |
+
MOG,2522
|
69 |
+
MOG2,4708
|
70 |
+
GMG,0
|
71 |
+
KNN,8903
|
72 |
+
CNT,82944
|
73 |
+
MOG,2547
|
74 |
+
MOG2,3572
|
75 |
+
GMG,0
|
76 |
+
KNN,9185
|
77 |
+
CNT,82944
|
78 |
+
MOG,2841
|
79 |
+
MOG2,4361
|
80 |
+
GMG,0
|
81 |
+
KNN,9203
|
82 |
+
CNT,11476
|
83 |
+
MOG,2797
|
84 |
+
MOG2,4978
|
85 |
+
GMG,0
|
86 |
+
KNN,9191
|
87 |
+
CNT,11835
|
88 |
+
MOG,3193
|
89 |
+
MOG2,6423
|
90 |
+
GMG,0
|
91 |
+
KNN,9457
|
92 |
+
CNT,12127
|
93 |
+
MOG,3332
|
94 |
+
MOG2,6143
|
95 |
+
GMG,0
|
96 |
+
KNN,9275
|
97 |
+
CNT,12165
|
98 |
+
MOG,3062
|
99 |
+
MOG2,5828
|
100 |
+
GMG,0
|
101 |
+
KNN,8928
|
102 |
+
CNT,12143
|
103 |
+
MOG,2982
|
104 |
+
MOG2,6405
|
105 |
+
GMG,0
|
106 |
+
KNN,8500
|
107 |
+
CNT,12219
|
108 |
+
MOG,3146
|
109 |
+
MOG2,5641
|
110 |
+
GMG,0
|
111 |
+
KNN,9061
|
112 |
+
CNT,12183
|
113 |
+
MOG,3436
|
114 |
+
MOG2,6863
|
115 |
+
GMG,0
|
116 |
+
KNN,9581
|
117 |
+
CNT,12493
|
118 |
+
MOG,3404
|
119 |
+
MOG2,6557
|
120 |
+
GMG,0
|
121 |
+
KNN,9542
|
122 |
+
CNT,12351
|
123 |
+
MOG,3506
|
124 |
+
MOG2,6465
|
125 |
+
GMG,0
|
126 |
+
KNN,9578
|
127 |
+
CNT,12339
|
128 |
+
MOG,3466
|
129 |
+
MOG2,7325
|
130 |
+
GMG,0
|
131 |
+
KNN,9529
|
132 |
+
CNT,12305
|
133 |
+
MOG,3155
|
134 |
+
MOG2,6867
|
135 |
+
GMG,0
|
136 |
+
KNN,9482
|
137 |
+
CNT,12288
|
138 |
+
MOG,3422
|
139 |
+
MOG2,7185
|
140 |
+
GMG,0
|
141 |
+
KNN,9765
|
142 |
+
CNT,12476
|
143 |
+
MOG,3494
|
144 |
+
MOG2,6794
|
145 |
+
GMG,0
|
146 |
+
KNN,9569
|
147 |
+
CNT,12159
|
148 |
+
MOG,3433
|
149 |
+
MOG2,6516
|
150 |
+
GMG,0
|
151 |
+
KNN,9349
|
152 |
+
CNT,12020
|
153 |
+
MOG,3412
|
154 |
+
MOG2,6533
|
155 |
+
GMG,0
|
156 |
+
KNN,9200
|
157 |
+
CNT,11881
|
158 |
+
MOG,3496
|
159 |
+
MOG2,5648
|
160 |
+
GMG,0
|
161 |
+
KNN,9423
|
162 |
+
CNT,11678
|
163 |
+
MOG,3684
|
164 |
+
MOG2,6334
|
165 |
+
GMG,0
|
166 |
+
KNN,9620
|
167 |
+
CNT,11741
|
168 |
+
MOG,3505
|
169 |
+
MOG2,5913
|
170 |
+
GMG,0
|
171 |
+
KNN,9393
|
172 |
+
CNT,11400
|
173 |
+
MOG,3624
|
174 |
+
MOG2,6065
|
175 |
+
GMG,0
|
176 |
+
KNN,9315
|
177 |
+
CNT,11332
|
178 |
+
MOG,3655
|
179 |
+
MOG2,6356
|
180 |
+
GMG,0
|
181 |
+
KNN,9154
|
182 |
+
CNT,11298
|
183 |
+
MOG,3634
|
184 |
+
MOG2,6153
|
185 |
+
GMG,0
|
186 |
+
KNN,8984
|
187 |
+
CNT,11207
|
188 |
+
MOG,3896
|
189 |
+
MOG2,6744
|
190 |
+
GMG,0
|
191 |
+
KNN,9079
|
192 |
+
CNT,11258
|
193 |
+
MOG,3833
|
194 |
+
MOG2,6697
|
195 |
+
GMG,0
|
196 |
+
KNN,8963
|
197 |
+
CNT,10997
|
198 |
+
MOG,3807
|
199 |
+
MOG2,6509
|
200 |
+
GMG,0
|
201 |
+
KNN,8849
|
202 |
+
CNT,10932
|
203 |
+
MOG,3895
|
204 |
+
MOG2,6628
|
205 |
+
GMG,0
|
206 |
+
KNN,9120
|
207 |
+
CNT,10901
|
208 |
+
MOG,3754
|
209 |
+
MOG2,6495
|
210 |
+
GMG,0
|
211 |
+
KNN,9058
|
212 |
+
CNT,10699
|
213 |
+
MOG,3923
|
214 |
+
MOG2,7065
|
215 |
+
GMG,0
|
216 |
+
KNN,9203
|
217 |
+
CNT,10732
|
218 |
+
MOG,3970
|
219 |
+
MOG2,7028
|
220 |
+
GMG,0
|
221 |
+
KNN,9156
|
222 |
+
CNT,10495
|
223 |
+
MOG,3988
|
224 |
+
MOG2,7177
|
225 |
+
GMG,0
|
226 |
+
KNN,9172
|
227 |
+
CNT,10416
|
228 |
+
MOG,4017
|
229 |
+
MOG2,7259
|
230 |
+
GMG,0
|
231 |
+
KNN,9185
|
232 |
+
CNT,10385
|
233 |
+
MOG,4036
|
234 |
+
MOG2,7306
|
235 |
+
GMG,0
|
236 |
+
KNN,9171
|
237 |
+
CNT,10328
|
238 |
+
MOG,4210
|
239 |
+
MOG2,7862
|
240 |
+
GMG,0
|
241 |
+
KNN,9315
|
242 |
+
CNT,10326
|
243 |
+
MOG,4209
|
244 |
+
MOG2,7954
|
245 |
+
GMG,0
|
246 |
+
KNN,9308
|
247 |
+
CNT,10221
|
248 |
+
MOG,4203
|
249 |
+
MOG2,7968
|
250 |
+
GMG,0
|
251 |
+
KNN,9310
|
252 |
+
CNT,10159
|
253 |
+
MOG,4286
|
254 |
+
MOG2,8613
|
255 |
+
GMG,0
|
256 |
+
KNN,9439
|
257 |
+
CNT,10209
|
258 |
+
MOG,4256
|
259 |
+
MOG2,8520
|
260 |
+
GMG,0
|
261 |
+
KNN,9656
|
262 |
+
CNT,10158
|
263 |
+
MOG,4409
|
264 |
+
MOG2,9092
|
265 |
+
GMG,0
|
266 |
+
KNN,9940
|
267 |
+
CNT,10228
|
268 |
+
MOG,4431
|
269 |
+
MOG2,9139
|
270 |
+
GMG,0
|
271 |
+
KNN,10043
|
272 |
+
CNT,10130
|
273 |
+
MOG,4449
|
274 |
+
MOG2,9281
|
275 |
+
GMG,0
|
276 |
+
KNN,10137
|
277 |
+
CNT,10050
|
278 |
+
MOG,4429
|
279 |
+
MOG2,9425
|
280 |
+
GMG,0
|
281 |
+
KNN,10151
|
282 |
+
CNT,10023
|
283 |
+
MOG,4502
|
284 |
+
MOG2,9545
|
285 |
+
GMG,0
|
286 |
+
KNN,10277
|
287 |
+
CNT,9990
|
288 |
+
MOG,4718
|
289 |
+
MOG2,10163
|
290 |
+
GMG,0
|
291 |
+
KNN,10547
|
292 |
+
CNT,10097
|
293 |
+
MOG,4709
|
294 |
+
MOG2,10031
|
295 |
+
GMG,0
|
296 |
+
KNN,10506
|
297 |
+
CNT,10067
|
298 |
+
MOG,4803
|
299 |
+
MOG2,10160
|
300 |
+
GMG,0
|
301 |
+
KNN,10481
|
302 |
+
CNT,10090
|
303 |
+
MOG,4790
|
304 |
+
MOG2,10168
|
305 |
+
GMG,0
|
306 |
+
KNN,10423
|
307 |
+
CNT,10063
|
308 |
+
MOG,4768
|
309 |
+
MOG2,10106
|
310 |
+
GMG,0
|
311 |
+
KNN,10337
|
312 |
+
CNT,10007
|
313 |
+
MOG,4905
|
314 |
+
MOG2,10435
|
315 |
+
GMG,0
|
316 |
+
KNN,10567
|
317 |
+
CNT,10037
|
318 |
+
MOG,4839
|
319 |
+
MOG2,10347
|
320 |
+
GMG,0
|
321 |
+
KNN,10534
|
322 |
+
CNT,9990
|
323 |
+
MOG,4823
|
324 |
+
MOG2,10287
|
325 |
+
GMG,0
|
326 |
+
KNN,10638
|
327 |
+
CNT,9965
|
328 |
+
MOG,4828
|
329 |
+
MOG2,10299
|
330 |
+
GMG,0
|
331 |
+
KNN,10560
|
332 |
+
CNT,9940
|
333 |
+
MOG,4794
|
334 |
+
MOG2,10273
|
335 |
+
GMG,0
|
336 |
+
KNN,10491
|
337 |
+
CNT,9845
|
338 |
+
MOG,4847
|
339 |
+
MOG2,10745
|
340 |
+
GMG,0
|
341 |
+
KNN,10502
|
342 |
+
CNT,9865
|
343 |
+
MOG,4843
|
344 |
+
MOG2,10819
|
345 |
+
GMG,0
|
346 |
+
KNN,10526
|
347 |
+
CNT,9798
|
348 |
+
MOG,4865
|
349 |
+
MOG2,10796
|
350 |
+
GMG,0
|
351 |
+
KNN,10561
|
352 |
+
CNT,9810
|
353 |
+
MOG,4858
|
354 |
+
MOG2,10667
|
355 |
+
GMG,0
|
356 |
+
KNN,10600
|
357 |
+
CNT,9839
|
358 |
+
MOG,4837
|
359 |
+
MOG2,10723
|
360 |
+
GMG,0
|
361 |
+
KNN,10625
|
362 |
+
CNT,9885
|
363 |
+
MOG,5071
|
364 |
+
MOG2,11237
|
365 |
+
GMG,0
|
366 |
+
KNN,11107
|
367 |
+
CNT,10097
|
368 |
+
MOG,5043
|
369 |
+
MOG2,11313
|
370 |
+
GMG,0
|
371 |
+
KNN,11110
|
372 |
+
CNT,10139
|
373 |
+
MOG,5116
|
374 |
+
MOG2,11269
|
375 |
+
GMG,0
|
376 |
+
KNN,11152
|
377 |
+
CNT,10195
|
378 |
+
MOG,5138
|
379 |
+
MOG2,11805
|
380 |
+
GMG,0
|
381 |
+
KNN,11315
|
382 |
+
CNT,10235
|
383 |
+
MOG,5169
|
384 |
+
MOG2,11695
|
385 |
+
GMG,0
|
386 |
+
KNN,11301
|
387 |
+
CNT,10211
|
388 |
+
MOG,5284
|
389 |
+
MOG2,11772
|
390 |
+
GMG,0
|
391 |
+
KNN,11471
|
392 |
+
CNT,10204
|
393 |
+
MOG,5297
|
394 |
+
MOG2,11747
|
395 |
+
GMG,0
|
396 |
+
KNN,11410
|
397 |
+
CNT,10124
|
398 |
+
MOG,5298
|
399 |
+
MOG2,11661
|
400 |
+
GMG,0
|
401 |
+
KNN,11385
|
402 |
+
CNT,10150
|
403 |
+
MOG,5350
|
404 |
+
MOG2,11590
|
405 |
+
GMG,0
|
406 |
+
KNN,11321
|
407 |
+
CNT,10168
|
408 |
+
MOG,5405
|
409 |
+
MOG2,11582
|
410 |
+
GMG,0
|
411 |
+
KNN,11423
|
412 |
+
CNT,10154
|
413 |
+
MOG,5602
|
414 |
+
MOG2,11800
|
415 |
+
GMG,0
|
416 |
+
KNN,11530
|
417 |
+
CNT,10279
|
418 |
+
MOG,5625
|
419 |
+
MOG2,11615
|
420 |
+
GMG,0
|
421 |
+
KNN,11580
|
422 |
+
CNT,10261
|
423 |
+
MOG,5587
|
424 |
+
MOG2,11605
|
425 |
+
GMG,0
|
426 |
+
KNN,11610
|
427 |
+
CNT,10243
|
428 |
+
MOG,5588
|
429 |
+
MOG2,11701
|
430 |
+
GMG,0
|
431 |
+
KNN,11675
|
432 |
+
CNT,10234
|
433 |
+
MOG,5595
|
434 |
+
MOG2,11708
|
435 |
+
GMG,0
|
436 |
+
KNN,11654
|
437 |
+
CNT,10179
|
438 |
+
MOG,5684
|
439 |
+
MOG2,11974
|
440 |
+
GMG,0
|
441 |
+
KNN,11801
|
442 |
+
CNT,10267
|
443 |
+
MOG,5611
|
444 |
+
MOG2,11918
|
445 |
+
GMG,0
|
446 |
+
KNN,11805
|
447 |
+
CNT,10261
|
448 |
+
MOG,5578
|
449 |
+
MOG2,11738
|
450 |
+
GMG,0
|
451 |
+
KNN,11757
|
452 |
+
CNT,10184
|
453 |
+
MOG,5577
|
454 |
+
MOG2,11654
|
455 |
+
GMG,0
|
456 |
+
KNN,11718
|
457 |
+
CNT,10097
|
458 |
+
MOG,5577
|
459 |
+
MOG2,11577
|
460 |
+
GMG,0
|
461 |
+
KNN,11766
|
462 |
+
CNT,10048
|
463 |
+
MOG,5564
|
464 |
+
MOG2,11650
|
465 |
+
GMG,0
|
466 |
+
KNN,11745
|
467 |
+
CNT,9979
|
468 |
+
MOG,5505
|
469 |
+
MOG2,11525
|
470 |
+
GMG,0
|
471 |
+
KNN,11664
|
472 |
+
CNT,9962
|
473 |
+
MOG,5485
|
474 |
+
MOG2,11413
|
475 |
+
GMG,0
|
476 |
+
KNN,11587
|
477 |
+
CNT,9936
|
478 |
+
MOG,5459
|
479 |
+
MOG2,11322
|
480 |
+
GMG,0
|
481 |
+
KNN,11501
|
482 |
+
CNT,9911
|
483 |
+
MOG,5452
|
484 |
+
MOG2,11245
|
485 |
+
GMG,0
|
486 |
+
KNN,11445
|
487 |
+
CNT,9964
|
488 |
+
MOG,5616
|
489 |
+
MOG2,11413
|
490 |
+
GMG,0
|
491 |
+
KNN,11382
|
492 |
+
CNT,10063
|
493 |
+
MOG,5627
|
494 |
+
MOG2,11288
|
495 |
+
GMG,0
|
496 |
+
KNN,11339
|
497 |
+
CNT,9991
|
498 |
+
MOG,5633
|
499 |
+
MOG2,11189
|
500 |
+
GMG,0
|
501 |
+
KNN,11261
|
502 |
+
CNT,10017
|
503 |
+
MOG,5659
|
504 |
+
MOG2,11464
|
505 |
+
GMG,0
|
506 |
+
KNN,11293
|
507 |
+
CNT,10052
|
508 |
+
MOG,5581
|
509 |
+
MOG2,11375
|
510 |
+
GMG,0
|
511 |
+
KNN,11251
|
512 |
+
CNT,10002
|
513 |
+
MOG,5594
|
514 |
+
MOG2,11947
|
515 |
+
GMG,0
|
516 |
+
KNN,11552
|
517 |
+
CNT,9932
|
518 |
+
MOG,5622
|
519 |
+
MOG2,11776
|
520 |
+
GMG,0
|
521 |
+
KNN,11451
|
522 |
+
CNT,9897
|
523 |
+
MOG,5629
|
524 |
+
MOG2,11666
|
525 |
+
GMG,0
|
526 |
+
KNN,11317
|
527 |
+
CNT,9832
|
528 |
+
MOG,5614
|
529 |
+
MOG2,11602
|
530 |
+
GMG,0
|
531 |
+
KNN,11172
|
532 |
+
CNT,9745
|
533 |
+
MOG,5614
|
534 |
+
MOG2,11570
|
535 |
+
GMG,0
|
536 |
+
KNN,11004
|
537 |
+
CNT,9703
|
538 |
+
MOG,5643
|
539 |
+
MOG2,11355
|
540 |
+
GMG,0
|
541 |
+
KNN,10818
|
542 |
+
CNT,9563
|
543 |
+
MOG,5703
|
544 |
+
MOG2,11405
|
545 |
+
GMG,0
|
546 |
+
KNN,10782
|
547 |
+
CNT,9593
|
548 |
+
MOG,5765
|
549 |
+
MOG2,11524
|
550 |
+
GMG,0
|
551 |
+
KNN,10768
|
552 |
+
CNT,9615
|
553 |
+
MOG,5770
|
554 |
+
MOG2,11512
|
555 |
+
GMG,0
|
556 |
+
KNN,10745
|
557 |
+
CNT,9589
|
558 |
+
MOG,5754
|
559 |
+
MOG2,11590
|
560 |
+
GMG,0
|
561 |
+
KNN,10723
|
562 |
+
CNT,9565
|
563 |
+
MOG,5827
|
564 |
+
MOG2,11551
|
565 |
+
GMG,0
|
566 |
+
KNN,10647
|
567 |
+
CNT,9440
|
568 |
+
MOG,5803
|
569 |
+
MOG2,11674
|
570 |
+
GMG,0
|
571 |
+
KNN,10640
|
572 |
+
CNT,9392
|
573 |
+
MOG,5786
|
574 |
+
MOG2,11730
|
575 |
+
GMG,0
|
576 |
+
KNN,10707
|
577 |
+
CNT,9323
|
578 |
+
MOG,5678
|
579 |
+
MOG2,11615
|
580 |
+
GMG,0
|
581 |
+
KNN,10650
|
582 |
+
CNT,9148
|
583 |
+
MOG,5554
|
584 |
+
MOG2,11456
|
585 |
+
GMG,0
|
586 |
+
KNN,10534
|
587 |
+
CNT,9000
|
588 |
+
MOG,5502
|
589 |
+
MOG2,11713
|
590 |
+
GMG,0
|
591 |
+
KNN,10557
|
592 |
+
CNT,8903
|
593 |
+
MOG,5429
|
594 |
+
MOG2,11477
|
595 |
+
GMG,0
|
596 |
+
KNN,10395
|
597 |
+
CNT,8821
|
598 |
+
MOG,5318
|
599 |
+
MOG2,11372
|
600 |
+
GMG,0
|
601 |
+
KNN,10350
|
602 |
+
CNT,8743
|
603 |
+
MOG,5234
|
604 |
+
MOG2,11300
|
605 |
+
GMG,82944
|
606 |
+
KNN,10262
|
607 |
+
CNT,8700
|
608 |
+
MOG,5064
|
609 |
+
MOG2,10952
|
610 |
+
GMG,2032
|
611 |
+
KNN,10048
|
612 |
+
CNT,8478
|
613 |
+
MOG,5056
|
614 |
+
MOG2,11285
|
615 |
+
GMG,6140
|
616 |
+
KNN,10111
|
617 |
+
CNT,8402
|
618 |
+
MOG,5008
|
619 |
+
MOG2,10997
|
620 |
+
GMG,8411
|
621 |
+
KNN,10014
|
622 |
+
CNT,8312
|
623 |
+
MOG,4999
|
624 |
+
MOG2,10943
|
625 |
+
GMG,7571
|
626 |
+
KNN,9940
|
627 |
+
CNT,8266
|
628 |
+
MOG,4956
|
629 |
+
MOG2,11127
|
630 |
+
GMG,8955
|
631 |
+
KNN,10039
|
632 |
+
CNT,8255
|
633 |
+
MOG,4904
|
634 |
+
MOG2,11054
|
635 |
+
GMG,8722
|
636 |
+
KNN,9984
|
637 |
+
CNT,8215
|
638 |
+
MOG,4827
|
639 |
+
MOG2,10830
|
640 |
+
GMG,10030
|
641 |
+
KNN,9946
|
642 |
+
CNT,8011
|
643 |
+
MOG,4739
|
644 |
+
MOG2,10658
|
645 |
+
GMG,6216
|
646 |
+
KNN,9940
|
647 |
+
CNT,7935
|
648 |
+
MOG,4687
|
649 |
+
MOG2,10545
|
650 |
+
GMG,5404
|
651 |
+
KNN,9887
|
652 |
+
CNT,7863
|
653 |
+
MOG,4612
|
654 |
+
MOG2,10388
|
655 |
+
GMG,3767
|
656 |
+
KNN,9793
|
657 |
+
CNT,7826
|
658 |
+
MOG,4540
|
659 |
+
MOG2,10139
|
660 |
+
GMG,3229
|
661 |
+
KNN,9733
|
662 |
+
CNT,7755
|
663 |
+
MOG,4511
|
664 |
+
MOG2,10094
|
665 |
+
GMG,4513
|
666 |
+
KNN,9621
|
667 |
+
CNT,7742
|
668 |
+
MOG,4449
|
669 |
+
MOG2,9923
|
670 |
+
GMG,3755
|
671 |
+
KNN,9505
|
672 |
+
CNT,7652
|
673 |
+
MOG,4390
|
674 |
+
MOG2,9814
|
675 |
+
GMG,3370
|
676 |
+
KNN,9415
|
677 |
+
CNT,7588
|
678 |
+
MOG,4358
|
679 |
+
MOG2,9663
|
680 |
+
GMG,2174
|
681 |
+
KNN,9322
|
682 |
+
CNT,7552
|
683 |
+
MOG,4327
|
684 |
+
MOG2,9548
|
685 |
+
GMG,2193
|
686 |
+
KNN,9247
|
687 |
+
CNT,7524
|
688 |
+
MOG,4287
|
689 |
+
MOG2,9517
|
690 |
+
GMG,3546
|
691 |
+
KNN,9079
|
692 |
+
CNT,7424
|
693 |
+
MOG,4267
|
694 |
+
MOG2,9460
|
695 |
+
GMG,3296
|
696 |
+
KNN,9043
|
697 |
+
CNT,7374
|
698 |
+
MOG,4255
|
699 |
+
MOG2,9475
|
700 |
+
GMG,3413
|
701 |
+
KNN,9114
|
702 |
+
CNT,7391
|
703 |
+
MOG,4215
|
704 |
+
MOG2,9448
|
705 |
+
GMG,2532
|
706 |
+
KNN,9065
|
707 |
+
CNT,7388
|
708 |
+
MOG,4165
|
709 |
+
MOG2,9335
|
710 |
+
GMG,2359
|
711 |
+
KNN,9023
|
712 |
+
CNT,7375
|
713 |
+
MOG,4088
|
714 |
+
MOG2,9285
|
715 |
+
GMG,3764
|
716 |
+
KNN,9076
|
717 |
+
CNT,7312
|
718 |
+
MOG,4001
|
719 |
+
MOG2,9190
|
720 |
+
GMG,3169
|
721 |
+
KNN,9099
|
722 |
+
CNT,7292
|
723 |
+
MOG,3995
|
724 |
+
MOG2,9072
|
725 |
+
GMG,2505
|
726 |
+
KNN,9028
|
727 |
+
CNT,7288
|
728 |
+
MOG,3982
|
729 |
+
MOG2,9046
|
730 |
+
GMG,1609
|
731 |
+
KNN,9013
|
732 |
+
CNT,7257
|
733 |
+
MOG,3928
|
734 |
+
MOG2,9047
|
735 |
+
GMG,1986
|
736 |
+
KNN,9029
|
737 |
+
CNT,7285
|
738 |
+
MOG,3980
|
739 |
+
MOG2,9278
|
740 |
+
GMG,3046
|
741 |
+
KNN,9066
|
742 |
+
CNT,7283
|
743 |
+
MOG,3923
|
744 |
+
MOG2,9212
|
745 |
+
GMG,2564
|
746 |
+
KNN,9021
|
747 |
+
CNT,7242
|
748 |
+
MOG,3902
|
749 |
+
MOG2,9164
|
750 |
+
GMG,1973
|
751 |
+
KNN,9021
|
752 |
+
CNT,7225
|
753 |
+
MOG,3896
|
754 |
+
MOG2,9435
|
755 |
+
GMG,2455
|
756 |
+
KNN,9078
|
757 |
+
CNT,7231
|
758 |
+
MOG,3827
|
759 |
+
MOG2,9351
|
760 |
+
GMG,1973
|
761 |
+
KNN,9066
|
762 |
+
CNT,7172
|
763 |
+
MOG,3923
|
764 |
+
MOG2,9703
|
765 |
+
GMG,3322
|
766 |
+
KNN,9236
|
767 |
+
CNT,7225
|
768 |
+
MOG,3884
|
769 |
+
MOG2,9701
|
770 |
+
GMG,2643
|
771 |
+
KNN,9256
|
772 |
+
CNT,7233
|
773 |
+
MOG,3854
|
774 |
+
MOG2,9721
|
775 |
+
GMG,2535
|
776 |
+
KNN,9279
|
777 |
+
CNT,7260
|
778 |
+
MOG,3810
|
779 |
+
MOG2,9711
|
780 |
+
GMG,1818
|
781 |
+
KNN,9286
|
782 |
+
CNT,7279
|
783 |
+
MOG,3840
|
784 |
+
MOG2,9688
|
785 |
+
GMG,1730
|
786 |
+
KNN,9331
|
787 |
+
CNT,7348
|
788 |
+
MOG,3830
|
789 |
+
MOG2,9823
|
790 |
+
GMG,2431
|
791 |
+
KNN,9355
|
792 |
+
CNT,7332
|
793 |
+
MOG,3872
|
794 |
+
MOG2,9864
|
795 |
+
GMG,2307
|
796 |
+
KNN,9321
|
797 |
+
CNT,7348
|
798 |
+
MOG,3907
|
799 |
+
MOG2,9836
|
800 |
+
GMG,2040
|
801 |
+
KNN,9347
|
802 |
+
CNT,7416
|
803 |
+
MOG,3941
|
804 |
+
MOG2,9696
|
805 |
+
GMG,1241
|
806 |
+
KNN,9299
|
807 |
+
CNT,7392
|
808 |
+
MOG,3930
|
809 |
+
MOG2,9577
|
810 |
+
GMG,1152
|
811 |
+
KNN,9213
|
812 |
+
CNT,7450
|
813 |
+
MOG,4097
|
814 |
+
MOG2,9660
|
815 |
+
GMG,2081
|
816 |
+
KNN,9221
|
817 |
+
CNT,7541
|
818 |
+
MOG,4119
|
819 |
+
MOG2,9630
|
820 |
+
GMG,2032
|
821 |
+
KNN,9233
|
822 |
+
CNT,7627
|
823 |
+
MOG,4161
|
824 |
+
MOG2,9613
|
825 |
+
GMG,2050
|
826 |
+
KNN,9194
|
827 |
+
CNT,7647
|
828 |
+
MOG,4156
|
829 |
+
MOG2,9583
|
830 |
+
GMG,1703
|
831 |
+
KNN,9264
|
832 |
+
CNT,7705
|
833 |
+
MOG,4205
|
834 |
+
MOG2,9595
|
835 |
+
GMG,1960
|
836 |
+
KNN,9389
|
837 |
+
CNT,7760
|
838 |
+
MOG,4247
|
839 |
+
MOG2,9709
|
840 |
+
GMG,2598
|
841 |
+
KNN,9463
|
842 |
+
CNT,7800
|
843 |
+
MOG,4223
|
844 |
+
MOG2,9734
|
845 |
+
GMG,2552
|
846 |
+
KNN,9516
|
847 |
+
CNT,7841
|
848 |
+
MOG,4183
|
849 |
+
MOG2,9677
|
850 |
+
GMG,2154
|
851 |
+
KNN,9561
|
852 |
+
CNT,7825
|
853 |
+
MOG,4186
|
854 |
+
MOG2,9612
|
855 |
+
GMG,1541
|
856 |
+
KNN,9585
|
857 |
+
CNT,7858
|
858 |
+
MOG,4154
|
859 |
+
MOG2,9602
|
860 |
+
GMG,1457
|
861 |
+
KNN,9521
|
862 |
+
CNT,7843
|
863 |
+
MOG,4191
|
864 |
+
MOG2,9718
|
865 |
+
GMG,2223
|
866 |
+
KNN,9509
|
867 |
+
CNT,7837
|
868 |
+
MOG,4206
|
869 |
+
MOG2,9663
|
870 |
+
GMG,2122
|
871 |
+
KNN,9402
|
872 |
+
CNT,7763
|
873 |
+
MOG,4196
|
874 |
+
MOG2,9623
|
875 |
+
GMG,1815
|
876 |
+
KNN,9419
|
877 |
+
CNT,7760
|
878 |
+
MOG,4205
|
879 |
+
MOG2,9905
|
880 |
+
GMG,1913
|
881 |
+
KNN,9494
|
882 |
+
CNT,7816
|
883 |
+
MOG,4200
|
884 |
+
MOG2,9804
|
885 |
+
GMG,1714
|
886 |
+
KNN,9454
|
887 |
+
CNT,7782
|
888 |
+
MOG,4267
|
889 |
+
MOG2,9832
|
890 |
+
GMG,2563
|
891 |
+
KNN,9405
|
892 |
+
CNT,7733
|
893 |
+
MOG,4272
|
894 |
+
MOG2,9720
|
895 |
+
GMG,2032
|
896 |
+
KNN,9438
|
897 |
+
CNT,7721
|
898 |
+
MOG,4292
|
899 |
+
MOG2,9764
|
900 |
+
GMG,2042
|
901 |
+
KNN,9474
|
902 |
+
CNT,7788
|
903 |
+
MOG,4317
|
904 |
+
MOG2,9737
|
905 |
+
GMG,1443
|
906 |
+
KNN,9474
|
907 |
+
CNT,7833
|
908 |
+
MOG,4326
|
909 |
+
MOG2,9750
|
910 |
+
GMG,1365
|
911 |
+
KNN,9503
|
912 |
+
CNT,7815
|
913 |
+
MOG,4406
|
914 |
+
MOG2,9697
|
915 |
+
GMG,2263
|
916 |
+
KNN,9508
|
917 |
+
CNT,7901
|
918 |
+
MOG,4404
|
919 |
+
MOG2,9693
|
920 |
+
GMG,2191
|
921 |
+
KNN,9546
|
922 |
+
CNT,7902
|
923 |
+
MOG,4430
|
924 |
+
MOG2,9656
|
925 |
+
GMG,1938
|
926 |
+
KNN,9507
|
927 |
+
CNT,7926
|
928 |
+
MOG,4459
|
929 |
+
MOG2,9655
|
930 |
+
GMG,1473
|
931 |
+
KNN,9468
|
932 |
+
CNT,7938
|
933 |
+
MOG,4522
|
934 |
+
MOG2,9585
|
935 |
+
GMG,1456
|
936 |
+
KNN,9426
|
937 |
+
CNT,7956
|
938 |
+
MOG,4662
|
939 |
+
MOG2,9700
|
940 |
+
GMG,2786
|
941 |
+
KNN,9527
|
942 |
+
CNT,8052
|
943 |
+
MOG,4688
|
944 |
+
MOG2,9670
|
945 |
+
GMG,2414
|
946 |
+
KNN,9486
|
947 |
+
CNT,8031
|
948 |
+
MOG,4683
|
949 |
+
MOG2,9648
|
950 |
+
GMG,1992
|
951 |
+
KNN,9488
|
952 |
+
CNT,7999
|
953 |
+
MOG,4680
|
954 |
+
MOG2,9514
|
955 |
+
GMG,1561
|
956 |
+
KNN,9394
|
957 |
+
CNT,8022
|
958 |
+
MOG,4683
|
959 |
+
MOG2,9532
|
960 |
+
GMG,1518
|
961 |
+
KNN,9400
|
962 |
+
CNT,8016
|
963 |
+
MOG,4762
|
964 |
+
MOG2,9606
|
965 |
+
GMG,2356
|
966 |
+
KNN,9480
|
967 |
+
CNT,8034
|
968 |
+
MOG,4768
|
969 |
+
MOG2,9622
|
970 |
+
GMG,2488
|
971 |
+
KNN,9496
|
972 |
+
CNT,8029
|
973 |
+
MOG,4754
|
974 |
+
MOG2,9629
|
975 |
+
GMG,2258
|
976 |
+
KNN,9441
|
977 |
+
CNT,8016
|
978 |
+
MOG,4756
|
979 |
+
MOG2,9595
|
980 |
+
GMG,2183
|
981 |
+
KNN,9387
|
982 |
+
CNT,8023
|
983 |
+
MOG,4755
|
984 |
+
MOG2,9579
|
985 |
+
GMG,1867
|
986 |
+
KNN,9426
|
987 |
+
CNT,7996
|
988 |
+
MOG,4746
|
989 |
+
MOG2,9686
|
990 |
+
GMG,2460
|
991 |
+
KNN,9451
|
992 |
+
CNT,7998
|
993 |
+
MOG,4694
|
994 |
+
MOG2,9632
|
995 |
+
GMG,2263
|
996 |
+
KNN,9460
|
997 |
+
CNT,7968
|
998 |
+
MOG,4646
|
999 |
+
MOG2,9609
|
1000 |
+
GMG,1989
|
1001 |
+
KNN,9394
|
1002 |
+
CNT,7926
|
1003 |
+
MOG,4669
|
1004 |
+
MOG2,9839
|
1005 |
+
GMG,2018
|
1006 |
+
KNN,9572
|
1007 |
+
CNT,7999
|
1008 |
+
MOG,4640
|
1009 |
+
MOG2,9772
|
1010 |
+
GMG,1842
|
1011 |
+
KNN,9474
|
1012 |
+
CNT,7980
|
1013 |
+
MOG,4695
|
1014 |
+
MOG2,9750
|
1015 |
+
GMG,2337
|
1016 |
+
KNN,9477
|
1017 |
+
CNT,7936
|
1018 |
+
MOG,4658
|
1019 |
+
MOG2,9608
|
1020 |
+
GMG,2003
|
1021 |
+
KNN,9422
|
1022 |
+
CNT,7909
|
1023 |
+
MOG,4714
|
1024 |
+
MOG2,9567
|
1025 |
+
GMG,1961
|
1026 |
+
KNN,9357
|
1027 |
+
CNT,7876
|
1028 |
+
MOG,4714
|
1029 |
+
MOG2,9442
|
1030 |
+
GMG,1650
|
1031 |
+
KNN,9342
|
1032 |
+
CNT,7852
|
1033 |
+
MOG,4734
|
1034 |
+
MOG2,9435
|
1035 |
+
GMG,1823
|
1036 |
+
KNN,9360
|
1037 |
+
CNT,7891
|
1038 |
+
MOG,4716
|
1039 |
+
MOG2,9548
|
1040 |
+
GMG,2692
|
1041 |
+
KNN,9424
|
1042 |
+
CNT,7840
|
1043 |
+
MOG,4689
|
1044 |
+
MOG2,9516
|
1045 |
+
GMG,2521
|
1046 |
+
KNN,9441
|
1047 |
+
CNT,7905
|
1048 |
+
MOG,4690
|
1049 |
+
MOG2,9541
|
1050 |
+
GMG,2441
|
1051 |
+
KNN,9500
|
1052 |
+
CNT,7979
|
1053 |
+
MOG,4675
|
1054 |
+
MOG2,9553
|
1055 |
+
GMG,2008
|
1056 |
+
KNN,9589
|
1057 |
+
CNT,8043
|
1058 |
+
MOG,4669
|
1059 |
+
MOG2,9550
|
1060 |
+
GMG,1856
|
1061 |
+
KNN,9579
|
1062 |
+
CNT,8058
|
1063 |
+
MOG,4644
|
1064 |
+
MOG2,9683
|
1065 |
+
GMG,2488
|
1066 |
+
KNN,9680
|
1067 |
+
CNT,8006
|
1068 |
+
MOG,4635
|
1069 |
+
MOG2,9624
|
1070 |
+
GMG,2384
|
1071 |
+
KNN,9633
|
1072 |
+
CNT,7991
|
1073 |
+
MOG,4626
|
1074 |
+
MOG2,9541
|
1075 |
+
GMG,2040
|
1076 |
+
KNN,9517
|
1077 |
+
CNT,7967
|
1078 |
+
MOG,4599
|
1079 |
+
MOG2,9505
|
1080 |
+
GMG,1617
|
1081 |
+
KNN,9454
|
1082 |
+
CNT,7893
|
1083 |
+
MOG,4558
|
1084 |
+
MOG2,9480
|
1085 |
+
GMG,1647
|
1086 |
+
KNN,9371
|
1087 |
+
CNT,7821
|
1088 |
+
MOG,4513
|
1089 |
+
MOG2,9471
|
1090 |
+
GMG,2568
|
1091 |
+
KNN,9353
|
1092 |
+
CNT,7761
|
1093 |
+
MOG,4460
|
1094 |
+
MOG2,9317
|
1095 |
+
GMG,2408
|
1096 |
+
KNN,9208
|
1097 |
+
CNT,7723
|
1098 |
+
MOG,4407
|
1099 |
+
MOG2,9305
|
1100 |
+
GMG,2130
|
1101 |
+
KNN,9161
|
1102 |
+
CNT,7650
|
1103 |
+
MOG,4387
|
1104 |
+
MOG2,9227
|
1105 |
+
GMG,1700
|
1106 |
+
KNN,9184
|
1107 |
+
CNT,7661
|
1108 |
+
MOG,4370
|
1109 |
+
MOG2,9199
|
1110 |
+
GMG,1752
|
1111 |
+
KNN,9123
|
1112 |
+
CNT,7677
|
1113 |
+
MOG,4325
|
1114 |
+
MOG2,9311
|
1115 |
+
GMG,2311
|
1116 |
+
KNN,9190
|
1117 |
+
CNT,7654
|
1118 |
+
MOG,4291
|
1119 |
+
MOG2,9277
|
1120 |
+
GMG,2064
|
1121 |
+
KNN,9217
|
1122 |
+
CNT,7648
|
1123 |
+
MOG,4233
|
1124 |
+
MOG2,9233
|
1125 |
+
GMG,1674
|
1126 |
+
KNN,9172
|
1127 |
+
CNT,7592
|
1128 |
+
MOG,4201
|
1129 |
+
MOG2,9444
|
1130 |
+
GMG,1617
|
1131 |
+
KNN,9237
|
1132 |
+
CNT,7608
|
1133 |
+
MOG,4183
|
1134 |
+
MOG2,9361
|
1135 |
+
GMG,1361
|
1136 |
+
KNN,9181
|
1137 |
+
CNT,7536
|
1138 |
+
MOG,4168
|
1139 |
+
MOG2,9306
|
1140 |
+
GMG,2061
|
1141 |
+
KNN,9131
|
1142 |
+
CNT,7456
|
1143 |
+
MOG,4171
|
1144 |
+
MOG2,9332
|
1145 |
+
GMG,1857
|
1146 |
+
KNN,9099
|
1147 |
+
CNT,7448
|
1148 |
+
MOG,4209
|
1149 |
+
MOG2,9307
|
1150 |
+
GMG,1913
|
1151 |
+
KNN,9085
|
1152 |
+
CNT,7512
|
1153 |
+
MOG,4151
|
1154 |
+
MOG2,9303
|
1155 |
+
GMG,1630
|
1156 |
+
KNN,9042
|
1157 |
+
CNT,7556
|
1158 |
+
MOG,4105
|
1159 |
+
MOG2,9300
|
1160 |
+
GMG,1685
|
1161 |
+
KNN,9012
|
1162 |
+
CNT,7550
|
1163 |
+
MOG,4056
|
1164 |
+
MOG2,9222
|
1165 |
+
GMG,1807
|
1166 |
+
KNN,8924
|
1167 |
+
CNT,7443
|
1168 |
+
MOG,3991
|
1169 |
+
MOG2,9349
|
1170 |
+
GMG,2538
|
1171 |
+
KNN,8822
|
1172 |
+
CNT,7394
|
1173 |
+
MOG,3917
|
1174 |
+
MOG2,9355
|
1175 |
+
GMG,2288
|
1176 |
+
KNN,8793
|
1177 |
+
CNT,7361
|
1178 |
+
MOG,3911
|
1179 |
+
MOG2,9365
|
1180 |
+
GMG,1860
|
1181 |
+
KNN,8792
|
1182 |
+
CNT,7355
|
1183 |
+
MOG,3931
|
1184 |
+
MOG2,9337
|
1185 |
+
GMG,1342
|
1186 |
+
KNN,8808
|
1187 |
+
CNT,7346
|
1188 |
+
MOG,3889
|
1189 |
+
MOG2,9352
|
1190 |
+
GMG,1285
|
1191 |
+
KNN,8776
|
1192 |
+
CNT,7393
|
1193 |
+
MOG,3901
|
1194 |
+
MOG2,9344
|
1195 |
+
GMG,2040
|
1196 |
+
KNN,8742
|
1197 |
+
CNT,7338
|
1198 |
+
MOG,3865
|
1199 |
+
MOG2,9360
|
1200 |
+
GMG,1980
|
1201 |
+
KNN,8763
|
1202 |
+
CNT,7322
|
1203 |
+
MOG,3812
|
1204 |
+
MOG2,9257
|
1205 |
+
GMG,1842
|
1206 |
+
KNN,8755
|
1207 |
+
CNT,7304
|
1208 |
+
MOG,3829
|
1209 |
+
MOG2,9280
|
1210 |
+
GMG,1432
|
1211 |
+
KNN,8769
|
1212 |
+
CNT,7284
|
1213 |
+
MOG,3837
|
1214 |
+
MOG2,9225
|
1215 |
+
GMG,1457
|
1216 |
+
KNN,8730
|
1217 |
+
CNT,7335
|
1218 |
+
MOG,3808
|
1219 |
+
MOG2,9202
|
1220 |
+
GMG,2240
|
1221 |
+
KNN,8685
|
1222 |
+
CNT,7302
|
1223 |
+
MOG,3824
|
1224 |
+
MOG2,9149
|
1225 |
+
GMG,2064
|
1226 |
+
KNN,8628
|
1227 |
+
CNT,7287
|
1228 |
+
MOG,3807
|
1229 |
+
MOG2,9174
|
1230 |
+
GMG,1861
|
1231 |
+
KNN,8573
|
1232 |
+
CNT,7283
|
1233 |
+
MOG,3785
|
1234 |
+
MOG2,9077
|
1235 |
+
GMG,1731
|
1236 |
+
KNN,8527
|
1237 |
+
CNT,7252
|
1238 |
+
MOG,3793
|
1239 |
+
MOG2,9029
|
1240 |
+
GMG,1527
|
1241 |
+
KNN,8535
|
1242 |
+
CNT,7242
|
1243 |
+
MOG,3811
|
1244 |
+
MOG2,9143
|
1245 |
+
GMG,2199
|
1246 |
+
KNN,8725
|
1247 |
+
CNT,7341
|
1248 |
+
MOG,3854
|
1249 |
+
MOG2,9112
|
1250 |
+
GMG,2214
|
1251 |
+
KNN,8801
|
1252 |
+
CNT,7339
|
1253 |
+
MOG,3870
|
1254 |
+
MOG2,9346
|
1255 |
+
GMG,2505
|
1256 |
+
KNN,8962
|
1257 |
+
CNT,7463
|
1258 |
+
MOG,3902
|
1259 |
+
MOG2,9351
|
1260 |
+
GMG,1864
|
1261 |
+
KNN,8990
|
1262 |
+
CNT,7499
|
1263 |
+
MOG,3913
|
1264 |
+
MOG2,9285
|
1265 |
+
GMG,1869
|
1266 |
+
KNN,9029
|
1267 |
+
CNT,7491
|
1268 |
+
MOG,4001
|
1269 |
+
MOG2,9303
|
1270 |
+
GMG,2612
|
1271 |
+
KNN,8992
|
1272 |
+
CNT,7552
|
1273 |
+
MOG,4031
|
1274 |
+
MOG2,9428
|
1275 |
+
GMG,2605
|
1276 |
+
KNN,9026
|
1277 |
+
CNT,7656
|
1278 |
+
MOG,4072
|
1279 |
+
MOG2,9327
|
1280 |
+
GMG,2201
|
1281 |
+
KNN,9000
|
1282 |
+
CNT,7673
|
1283 |
+
MOG,4119
|
1284 |
+
MOG2,9374
|
1285 |
+
GMG,2071
|
1286 |
+
KNN,8992
|
1287 |
+
CNT,7680
|
1288 |
+
MOG,4112
|
1289 |
+
MOG2,9404
|
1290 |
+
GMG,2162
|
1291 |
+
KNN,9009
|
1292 |
+
CNT,7740
|
1293 |
+
MOG,4183
|
1294 |
+
MOG2,9323
|
1295 |
+
GMG,2711
|
1296 |
+
KNN,8806
|
1297 |
+
CNT,7603
|
1298 |
+
MOG,4146
|
1299 |
+
MOG2,9263
|
1300 |
+
GMG,2490
|
1301 |
+
KNN,8792
|
1302 |
+
CNT,7585
|
1303 |
+
MOG,4141
|
1304 |
+
MOG2,9263
|
1305 |
+
GMG,2425
|
1306 |
+
KNN,8788
|
1307 |
+
CNT,7541
|
1308 |
+
MOG,4183
|
1309 |
+
MOG2,9367
|
1310 |
+
GMG,2168
|
1311 |
+
KNN,8811
|
1312 |
+
CNT,7584
|
1313 |
+
MOG,4198
|
1314 |
+
MOG2,9322
|
1315 |
+
GMG,2061
|
1316 |
+
KNN,8760
|
1317 |
+
CNT,7577
|
1318 |
+
MOG,4302
|
1319 |
+
MOG2,9401
|
1320 |
+
GMG,2924
|
1321 |
+
KNN,8755
|
1322 |
+
CNT,7563
|
1323 |
+
MOG,4288
|
1324 |
+
MOG2,9350
|
1325 |
+
GMG,2481
|
1326 |
+
KNN,8765
|
1327 |
+
CNT,7568
|
1328 |
+
MOG,4246
|
1329 |
+
MOG2,9248
|
1330 |
+
GMG,2296
|
1331 |
+
KNN,8707
|
1332 |
+
CNT,7533
|
1333 |
+
MOG,4244
|
1334 |
+
MOG2,9155
|
1335 |
+
GMG,1944
|
1336 |
+
KNN,8654
|
1337 |
+
CNT,7519
|
1338 |
+
MOG,4178
|
1339 |
+
MOG2,8924
|
1340 |
+
GMG,1897
|
1341 |
+
KNN,8525
|
1342 |
+
CNT,7437
|
1343 |
+
MOG,4208
|
1344 |
+
MOG2,8977
|
1345 |
+
GMG,2922
|
1346 |
+
KNN,8621
|
1347 |
+
CNT,7425
|
1348 |
+
MOG,4228
|
1349 |
+
MOG2,8906
|
1350 |
+
GMG,2850
|
1351 |
+
KNN,8598
|
1352 |
+
CNT,7425
|
1353 |
+
MOG,4194
|
1354 |
+
MOG2,8846
|
1355 |
+
GMG,2467
|
1356 |
+
KNN,8569
|
1357 |
+
CNT,7442
|
1358 |
+
MOG,4160
|
1359 |
+
MOG2,8669
|
1360 |
+
GMG,1978
|
1361 |
+
KNN,8473
|
1362 |
+
CNT,7407
|
1363 |
+
MOG,4139
|
1364 |
+
MOG2,8599
|
1365 |
+
GMG,1749
|
1366 |
+
KNN,8432
|
1367 |
+
CNT,7391
|
1368 |
+
MOG,4115
|
1369 |
+
MOG2,8580
|
1370 |
+
GMG,2471
|
1371 |
+
KNN,8425
|
1372 |
+
CNT,7379
|
1373 |
+
MOG,4069
|
1374 |
+
MOG2,8505
|
1375 |
+
GMG,2180
|
1376 |
+
KNN,8408
|
1377 |
+
CNT,7329
|
1378 |
+
MOG,4018
|
1379 |
+
MOG2,8740
|
1380 |
+
GMG,2502
|
1381 |
+
KNN,8542
|
1382 |
+
CNT,7313
|
1383 |
+
MOG,3951
|
1384 |
+
MOG2,8679
|
1385 |
+
GMG,1796
|
1386 |
+
KNN,8484
|
1387 |
+
CNT,7253
|
1388 |
+
MOG,3912
|
1389 |
+
MOG2,8648
|
1390 |
+
GMG,1779
|
1391 |
+
KNN,8461
|
1392 |
+
CNT,7192
|
1393 |
+
MOG,3936
|
1394 |
+
MOG2,8701
|
1395 |
+
GMG,2552
|
1396 |
+
KNN,8443
|
1397 |
+
CNT,7194
|
1398 |
+
MOG,3916
|
1399 |
+
MOG2,8672
|
1400 |
+
GMG,2331
|
1401 |
+
KNN,8393
|
1402 |
+
CNT,7209
|
1403 |
+
MOG,3903
|
1404 |
+
MOG2,8603
|
1405 |
+
GMG,2009
|
1406 |
+
KNN,8383
|
1407 |
+
CNT,7183
|
1408 |
+
MOG,3852
|
1409 |
+
MOG2,8647
|
1410 |
+
GMG,1701
|
1411 |
+
KNN,8386
|
1412 |
+
CNT,7225
|
1413 |
+
MOG,3874
|
1414 |
+
MOG2,8612
|
1415 |
+
GMG,1758
|
1416 |
+
KNN,8371
|
1417 |
+
CNT,7220
|
1418 |
+
MOG,3909
|
1419 |
+
MOG2,8580
|
1420 |
+
GMG,3367
|
1421 |
+
KNN,8253
|
1422 |
+
CNT,7208
|
1423 |
+
MOG,3898
|
1424 |
+
MOG2,8593
|
1425 |
+
GMG,3047
|
1426 |
+
KNN,8252
|
1427 |
+
CNT,7190
|
1428 |
+
MOG,3860
|
1429 |
+
MOG2,8491
|
1430 |
+
GMG,2470
|
1431 |
+
KNN,8166
|
1432 |
+
CNT,7122
|
1433 |
+
MOG,3866
|
1434 |
+
MOG2,8463
|
1435 |
+
GMG,1906
|
1436 |
+
KNN,8147
|
1437 |
+
CNT,7139
|
1438 |
+
MOG,3849
|
1439 |
+
MOG2,8425
|
1440 |
+
GMG,1862
|
1441 |
+
KNN,8074
|
1442 |
+
CNT,7097
|
1443 |
+
MOG,3885
|
1444 |
+
MOG2,8398
|
1445 |
+
GMG,2350
|
1446 |
+
KNN,8095
|
1447 |
+
CNT,7090
|
1448 |
+
MOG,3924
|
1449 |
+
MOG2,8387
|
1450 |
+
GMG,2076
|
1451 |
+
KNN,8129
|
1452 |
+
CNT,7114
|
1453 |
+
MOG,3956
|
1454 |
+
MOG2,8309
|
1455 |
+
GMG,1914
|
1456 |
+
KNN,8149
|
1457 |
+
CNT,7138
|
1458 |
+
MOG,3945
|
1459 |
+
MOG2,8355
|
1460 |
+
GMG,1572
|
1461 |
+
KNN,8179
|
1462 |
+
CNT,7192
|
1463 |
+
MOG,3918
|
1464 |
+
MOG2,8383
|
1465 |
+
GMG,1549
|
1466 |
+
KNN,8215
|
1467 |
+
CNT,7212
|
1468 |
+
MOG,3955
|
1469 |
+
MOG2,8482
|
1470 |
+
GMG,2358
|
1471 |
+
KNN,8296
|
1472 |
+
CNT,7239
|
1473 |
+
MOG,3959
|
1474 |
+
MOG2,8494
|
1475 |
+
GMG,2316
|
1476 |
+
KNN,8358
|
1477 |
+
CNT,7293
|
1478 |
+
MOG,4011
|
1479 |
+
MOG2,8478
|
1480 |
+
GMG,1947
|
1481 |
+
KNN,8343
|
1482 |
+
CNT,7325
|
1483 |
+
MOG,4013
|
1484 |
+
MOG2,8490
|
1485 |
+
GMG,1752
|
1486 |
+
KNN,8345
|
1487 |
+
CNT,7342
|
1488 |
+
MOG,4053
|
1489 |
+
MOG2,8473
|
1490 |
+
GMG,1669
|
1491 |
+
KNN,8319
|
1492 |
+
CNT,7362
|
1493 |
+
MOG,4080
|
1494 |
+
MOG2,8371
|
1495 |
+
GMG,2363
|
1496 |
+
KNN,8184
|
1497 |
+
CNT,7211
|
1498 |
+
MOG,4067
|
1499 |
+
MOG2,8345
|
1500 |
+
GMG,2443
|
1501 |
+
KNN,8131
|
1502 |
+
CNT,7170
|
1503 |
+
MOG,4139
|
1504 |
+
MOG2,8498
|
1505 |
+
GMG,2867
|
1506 |
+
KNN,8353
|
1507 |
+
CNT,7284
|
1508 |
+
MOG,4107
|
1509 |
+
MOG2,8408
|
1510 |
+
GMG,2326
|
1511 |
+
KNN,8286
|
1512 |
+
CNT,7176
|
1513 |
+
MOG,4125
|
1514 |
+
MOG2,8308
|
1515 |
+
GMG,2212
|
1516 |
+
KNN,8203
|
1517 |
+
CNT,7174
|
1518 |
+
MOG,4219
|
1519 |
+
MOG2,8299
|
1520 |
+
GMG,2694
|
1521 |
+
KNN,8151
|
1522 |
+
CNT,7118
|
1523 |
+
MOG,4246
|
1524 |
+
MOG2,8324
|
1525 |
+
GMG,2367
|
1526 |
+
KNN,8185
|
1527 |
+
CNT,7139
|
1528 |
+
MOG,4233
|
1529 |
+
MOG2,8296
|
1530 |
+
GMG,2112
|
1531 |
+
KNN,8157
|
1532 |
+
CNT,7111
|
1533 |
+
MOG,4171
|
1534 |
+
MOG2,8169
|
1535 |
+
GMG,1718
|
1536 |
+
KNN,8053
|
1537 |
+
CNT,7038
|
1538 |
+
MOG,4173
|
1539 |
+
MOG2,8108
|
1540 |
+
GMG,1656
|
1541 |
+
KNN,8038
|
1542 |
+
CNT,7031
|
1543 |
+
MOG,4214
|
1544 |
+
MOG2,8013
|
1545 |
+
GMG,2486
|
1546 |
+
KNN,7977
|
1547 |
+
CNT,7030
|
1548 |
+
MOG,4218
|
1549 |
+
MOG2,8003
|
1550 |
+
GMG,2402
|
1551 |
+
KNN,7961
|
1552 |
+
CNT,7017
|
1553 |
+
MOG,4251
|
1554 |
+
MOG2,7985
|
1555 |
+
GMG,2247
|
1556 |
+
KNN,8033
|
1557 |
+
CNT,7044
|
1558 |
+
MOG,4207
|
1559 |
+
MOG2,7885
|
1560 |
+
GMG,1889
|
1561 |
+
KNN,8026
|
1562 |
+
CNT,7024
|
1563 |
+
MOG,4193
|
1564 |
+
MOG2,7775
|
1565 |
+
GMG,1706
|
1566 |
+
KNN,7931
|
1567 |
+
CNT,6967
|
1568 |
+
MOG,4242
|
1569 |
+
MOG2,7797
|
1570 |
+
GMG,2343
|
1571 |
+
KNN,7905
|
1572 |
+
CNT,6928
|
1573 |
+
MOG,4215
|
1574 |
+
MOG2,7749
|
1575 |
+
GMG,2133
|
1576 |
+
KNN,7893
|
1577 |
+
CNT,6927
|
1578 |
+
MOG,4171
|
1579 |
+
MOG2,7744
|
1580 |
+
GMG,1894
|
1581 |
+
KNN,7927
|
1582 |
+
CNT,6911
|
1583 |
+
MOG,4188
|
1584 |
+
MOG2,7758
|
1585 |
+
GMG,1621
|
1586 |
+
KNN,7922
|
1587 |
+
CNT,6943
|
1588 |
+
MOG,4185
|
1589 |
+
MOG2,7736
|
1590 |
+
GMG,1476
|
1591 |
+
KNN,7928
|
1592 |
+
CNT,6941
|
1593 |
+
MOG,4210
|
1594 |
+
MOG2,7821
|
1595 |
+
GMG,2156
|
1596 |
+
KNN,7936
|
1597 |
+
CNT,6926
|
1598 |
+
MOG,4146
|
1599 |
+
MOG2,7883
|
1600 |
+
GMG,2066
|
1601 |
+
KNN,7928
|
1602 |
+
CNT,6851
|
1603 |
+
MOG,4151
|
1604 |
+
MOG2,7974
|
1605 |
+
GMG,1892
|
1606 |
+
KNN,7955
|
1607 |
+
CNT,6863
|
1608 |
+
MOG,4176
|
1609 |
+
MOG2,8003
|
1610 |
+
GMG,1630
|
1611 |
+
KNN,7960
|
1612 |
+
CNT,6892
|
1613 |
+
MOG,4245
|
1614 |
+
MOG2,8103
|
1615 |
+
GMG,1723
|
1616 |
+
KNN,8019
|
1617 |
+
CNT,6925
|
1618 |
+
MOG,4295
|
1619 |
+
MOG2,8371
|
1620 |
+
GMG,2352
|
1621 |
+
KNN,8126
|
1622 |
+
CNT,7060
|
1623 |
+
MOG,4340
|
1624 |
+
MOG2,8475
|
1625 |
+
GMG,2439
|
1626 |
+
KNN,8155
|
1627 |
+
CNT,7055
|
1628 |
+
MOG,4344
|
1629 |
+
MOG2,8721
|
1630 |
+
GMG,2416
|
1631 |
+
KNN,8404
|
1632 |
+
CNT,7201
|
1633 |
+
MOG,4339
|
1634 |
+
MOG2,8660
|
1635 |
+
GMG,1889
|
1636 |
+
KNN,8373
|
1637 |
+
CNT,7208
|
1638 |
+
MOG,4341
|
1639 |
+
MOG2,8736
|
1640 |
+
GMG,1784
|
1641 |
+
KNN,8438
|
1642 |
+
CNT,7211
|
1643 |
+
MOG,4408
|
1644 |
+
MOG2,8824
|
1645 |
+
GMG,2392
|
1646 |
+
KNN,8477
|
1647 |
+
CNT,7258
|
1648 |
+
MOG,4427
|
1649 |
+
MOG2,8935
|
1650 |
+
GMG,2282
|
1651 |
+
KNN,8577
|
1652 |
+
CNT,7327
|
1653 |
+
MOG,4433
|
1654 |
+
MOG2,8912
|
1655 |
+
GMG,1980
|
1656 |
+
KNN,8570
|
1657 |
+
CNT,7341
|
1658 |
+
MOG,4452
|
1659 |
+
MOG2,8888
|
1660 |
+
GMG,1649
|
1661 |
+
KNN,8526
|
1662 |
+
CNT,7369
|
1663 |
+
MOG,4417
|
1664 |
+
MOG2,8860
|
1665 |
+
GMG,1514
|
1666 |
+
KNN,8567
|
1667 |
+
CNT,7385
|
1668 |
+
MOG,4486
|
1669 |
+
MOG2,8896
|
1670 |
+
GMG,2406
|
1671 |
+
KNN,8584
|
1672 |
+
CNT,7464
|
1673 |
+
MOG,4463
|
1674 |
+
MOG2,8855
|
1675 |
+
GMG,2224
|
1676 |
+
KNN,8583
|
1677 |
+
CNT,7483
|
1678 |
+
MOG,4443
|
1679 |
+
MOG2,8831
|
1680 |
+
GMG,1993
|
1681 |
+
KNN,8598
|
1682 |
+
CNT,7474
|
1683 |
+
MOG,4501
|
1684 |
+
MOG2,8872
|
1685 |
+
GMG,1695
|
1686 |
+
KNN,8673
|
1687 |
+
CNT,7520
|
1688 |
+
MOG,4504
|
1689 |
+
MOG2,8875
|
1690 |
+
GMG,1613
|
1691 |
+
KNN,8729
|
1692 |
+
CNT,7614
|
1693 |
+
MOG,4516
|
1694 |
+
MOG2,8834
|
1695 |
+
GMG,2370
|
1696 |
+
KNN,8705
|
1697 |
+
CNT,7557
|
1698 |
+
MOG,4488
|
1699 |
+
MOG2,8883
|
1700 |
+
GMG,2326
|
1701 |
+
KNN,8741
|
1702 |
+
CNT,7542
|
1703 |
+
MOG,4417
|
1704 |
+
MOG2,8809
|
1705 |
+
GMG,1976
|
1706 |
+
KNN,8665
|
1707 |
+
CNT,7500
|
temporal_median_filter.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2 # opencv
|
3 |
+
#print(cv2.__version__)
|
4 |
+
|
5 |
+
VIDEO_SOURCE = 'videos/Cars.mp4'
|
6 |
+
VIDEO_OUT = 'videos/results/temporal_median_filter.avi'
|
7 |
+
|
8 |
+
cap = cv2.VideoCapture(VIDEO_SOURCE)
|
9 |
+
has_frame, frame = cap.read()
|
10 |
+
#print(has_frame, frame.shape)
|
11 |
+
|
12 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
13 |
+
# https://docs.opencv.org/3.4/dd/d9e/classcv_1_1VideoWriter.html
|
14 |
+
writer = cv2.VideoWriter(VIDEO_OUT, fourcc, 25, (frame.shape[1], frame.shape[0]), False)
|
15 |
+
|
16 |
+
#print(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
17 |
+
#print(np.random.uniform(size = 25))
|
18 |
+
frames_ids = cap.get(cv2.CAP_PROP_FRAME_COUNT) * np.random.uniform(size = 25)
|
19 |
+
#print(frames_ids)
|
20 |
+
|
21 |
+
#cap.set(cv2.CAP_PROP_POS_FRAMES, 825)
|
22 |
+
#has_frame, frame = cap.read()
|
23 |
+
#cv2.imshow('Test', frame)
|
24 |
+
#cv2.waitKey(0)
|
25 |
+
|
26 |
+
frames = []
|
27 |
+
for fid in frames_ids:
|
28 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, fid)
|
29 |
+
has_frame, frame = cap.read()
|
30 |
+
frames.append(frame)
|
31 |
+
|
32 |
+
#print(np.asarray(frames).shape)
|
33 |
+
#print(frames[1])
|
34 |
+
|
35 |
+
#for frame in frames:
|
36 |
+
# cv2.imshow('Frame', frame)
|
37 |
+
# cv2.waitKey(0)
|
38 |
+
|
39 |
+
#print(np.mean([1, 3, 5, 6, 8, 9]))
|
40 |
+
#print((1 + 3 + 5 + 6 + 8 + 9) / 6)
|
41 |
+
#print(np.median([[1, 3, 5, 6, 8, 9]]))
|
42 |
+
#print((5 + 6) / 2)
|
43 |
+
#print(np.median([1, 3, 4, 5, 6, 8, 9]))
|
44 |
+
|
45 |
+
median_frame = np.median(frames, axis = 0).astype(dtype=np.uint8)
|
46 |
+
#print(frame[0])
|
47 |
+
#print(median_frame)
|
48 |
+
#cv2.imshow('Median frame', median_frame)
|
49 |
+
#cv2.waitKey(0)
|
50 |
+
|
51 |
+
cv2.imwrite('model_median_frame.jpg', median_frame)
|
52 |
+
|
53 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
54 |
+
gray_median_frame = cv2.cvtColor(median_frame, cv2.COLOR_BGR2GRAY)
|
55 |
+
#cv2.imshow('Gray', gray_median_frame)
|
56 |
+
#cv2.waitKey(0)
|
57 |
+
|
58 |
+
while (True):
|
59 |
+
has_frame, frame = cap.read()
|
60 |
+
|
61 |
+
if not has_frame:
|
62 |
+
print('End of the video')
|
63 |
+
break
|
64 |
+
|
65 |
+
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
66 |
+
dframe = cv2.absdiff(frame_gray, gray_median_frame)
|
67 |
+
# If pixel intensity is greater than the set threshold, value set to 255, else set to 0(black).
|
68 |
+
#th, dframe = cv2.threshold(dframe, 70, 255, cv2.THRESH_BINARY)
|
69 |
+
th, dframe = cv2.threshold(dframe, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
70 |
+
print(th)
|
71 |
+
|
72 |
+
cv2.imshow('Frame', dframe)
|
73 |
+
writer.write(dframe)
|
74 |
+
|
75 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
76 |
+
break
|
77 |
+
|
78 |
+
writer.release()
|
79 |
+
cap.release()
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
test.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
print('Testing the project')
|
validator.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on: https://github.com/sarful/People-counter-opencv-python3/blob/master/Person.py
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
class MyValidator:
|
6 |
+
tracks = []
|
7 |
+
|
8 |
+
def __init__(self, i, xi, yi, max_age):
|
9 |
+
self.i = i
|
10 |
+
self.x = xi
|
11 |
+
self.y = yi
|
12 |
+
self.tracks = []
|
13 |
+
self.done = False
|
14 |
+
self.state = '0'
|
15 |
+
self.age = 0
|
16 |
+
self.max_age = max_age
|
17 |
+
self.dir = None
|
18 |
+
|
19 |
+
def getTracks(self):
|
20 |
+
return self.tracks
|
21 |
+
|
22 |
+
def getId(self):
|
23 |
+
return self.i
|
24 |
+
|
25 |
+
def getState(self):
|
26 |
+
return self.state
|
27 |
+
|
28 |
+
def getDir(self):
|
29 |
+
return self.dir
|
30 |
+
|
31 |
+
def getX(self):
|
32 |
+
return self.x
|
33 |
+
|
34 |
+
def getY(self):
|
35 |
+
return self.y
|
36 |
+
|
37 |
+
def updateCoords(self, xn, yn):
|
38 |
+
self.age = 0
|
39 |
+
self.tracks.append([self.x, self.y])
|
40 |
+
self.x = xn
|
41 |
+
self.y = yn
|
42 |
+
|
43 |
+
def setDone(self):
|
44 |
+
self.done = True
|
45 |
+
|
46 |
+
def timedOut(self):
|
47 |
+
return self.done
|
48 |
+
|
49 |
+
def going_DOWN(self, mid_start):
|
50 |
+
|
51 |
+
# Check if you have at least 2 coordinates of stored objects
|
52 |
+
if len(self.tracks) >= 2:
|
53 |
+
|
54 |
+
# Check if the condition of the object is zero
|
55 |
+
# The state of the object will only change when crossing the input threshold
|
56 |
+
if self.state == '0':
|
57 |
+
|
58 |
+
# Euclidian distance calculation
|
59 |
+
distance = math.sqrt(float((self.tracks[-1][1] - self.tracks[-2][1])**2) + float(
|
60 |
+
(self.tracks[-1][1] - self.tracks[-2][1])**2))
|
61 |
+
if distance < 10:
|
62 |
+
# [-2] are two previous positions of the vector record and [1] is the column containing the
|
63 |
+
# vertical values (y) of each object
|
64 |
+
# If the anterior vertical position of the object is greater than the input threshold and if in
|
65 |
+
# two anterior vertical positions the value is less than or equal to the input threshold
|
66 |
+
# we updated the state of the object to 1 and indicated that it moved downwards (down)
|
67 |
+
# We do this to make sure that the object crossed the entrance line, moving from top to bottom
|
68 |
+
if self.tracks[-1][1] > mid_start and self.tracks[-2][1] <= mid_start:
|
69 |
+
state = '1'
|
70 |
+
self.dir = 'down'
|
71 |
+
return True
|
72 |
+
else:
|
73 |
+
return False
|
74 |
+
else:
|
75 |
+
return False
|
76 |
+
|
77 |
+
def going_UP(self, mid_end):
|
78 |
+
if len(self.tracks) >= 2:
|
79 |
+
if self.state == '0':
|
80 |
+
distance = math.sqrt(float((self.tracks[-1][1] - self.tracks[-2][1])**2) + float(
|
81 |
+
(self.tracks[-1][1] - self.tracks[-2][1])**2))
|
82 |
+
if distance < 10:
|
83 |
+
if self.tracks[-1][1] < mid_end and self.tracks[-2][1] >= mid_end:
|
84 |
+
state = '1'
|
85 |
+
self.dir = 'up'
|
86 |
+
return True
|
87 |
+
else:
|
88 |
+
return False
|
89 |
+
else:
|
90 |
+
return False
|
91 |
+
|
92 |
+
def age_one(self):
|
93 |
+
self.age += 1
|
94 |
+
if self.age > self.max_age:
|
95 |
+
self.done = True
|
96 |
+
return True
|