Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,11 @@ from llama_index.readers.web import FireCrawlWebReader
|
|
14 |
from llama_index.core import SummaryIndex
|
15 |
import streamlit_analytics2 as streamlit_analytics
|
16 |
import time
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Initialize session state
|
19 |
if 'setup_complete' not in st.session_state:
|
@@ -24,8 +29,15 @@ if 'chat_history' not in st.session_state:
|
|
24 |
st.session_state['chat_history'] = []
|
25 |
if 'index' not in st.session_state:
|
26 |
st.session_state['index'] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
|
|
29 |
|
30 |
# Setup functions
|
31 |
def embed_setup():
|
@@ -81,58 +93,65 @@ st.title("Talk to Software Documentation")
|
|
81 |
|
82 |
st.markdown("""
|
83 |
This tool allows you to chat with software documentation. Here's how to use it:
|
84 |
-
1. Enter the URL of the documentation you want to chat about.
|
85 |
-
2.
|
86 |
-
3.
|
87 |
-
4.
|
88 |
-
5.
|
|
|
89 |
""")
|
90 |
|
91 |
with streamlit_analytics.track():
|
92 |
# URL input for document ingestion
|
93 |
-
url = st.text_input("Enter URL to crawl and ingest documents:")
|
|
|
|
|
|
|
94 |
|
95 |
# Combined Ingest and Setup button
|
96 |
if st.button("Ingest and Setup"):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
st.session_state['
|
106 |
-
st.session_state['
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
|
111 |
# Query input
|
112 |
-
query = st.text_input("Enter your query:
|
113 |
|
114 |
# Search button
|
115 |
if st.button("Search"):
|
116 |
if not st.session_state['setup_complete']:
|
117 |
st.error("Please complete the setup first")
|
118 |
-
elif query:
|
119 |
with st.spinner("Searching..."):
|
120 |
try:
|
121 |
chat_engine = query_index(st.session_state['index'])
|
122 |
-
response = chat_engine.chat(query)
|
123 |
except Exception as e:
|
124 |
st.error(f"An error occurred: {str(e)}")
|
125 |
st.info("Retrying in 120 seconds...")
|
126 |
time.sleep(120)
|
127 |
try:
|
128 |
chat_engine = query_index(st.session_state['index'])
|
129 |
-
response = chat_engine.chat(query)
|
130 |
except Exception as e:
|
131 |
st.error(f"Retry failed. Error: {str(e)}")
|
132 |
st.stop()
|
133 |
|
134 |
# Add the query and response to chat history
|
135 |
-
st.session_state['chat_history'].append(("User", query))
|
136 |
st.session_state['chat_history'].append(("Assistant", str(response.response)))
|
137 |
|
138 |
# Display the most recent response prominently
|
|
|
14 |
from llama_index.core import SummaryIndex
|
15 |
import streamlit_analytics2 as streamlit_analytics
|
16 |
import time
|
17 |
+
import dotenv
|
18 |
+
|
19 |
+
dotenv.load_dotenv()
|
20 |
+
# Set page config
|
21 |
+
#st.set_page_config(page_title="Talk to Software Documentation", page_icon="📚", layout="wide")
|
22 |
|
23 |
# Initialize session state
|
24 |
if 'setup_complete' not in st.session_state:
|
|
|
29 |
st.session_state['chat_history'] = []
|
30 |
if 'index' not in st.session_state:
|
31 |
st.session_state['index'] = None
|
32 |
+
if 'url' not in st.session_state:
|
33 |
+
st.session_state['url'] = ""
|
34 |
+
if 'collection_name' not in st.session_state:
|
35 |
+
st.session_state['collection_name'] = ""
|
36 |
+
if 'query' not in st.session_state:
|
37 |
+
st.session_state['query'] = ""
|
38 |
|
39 |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
40 |
+
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
41 |
|
42 |
# Setup functions
|
43 |
def embed_setup():
|
|
|
93 |
|
94 |
st.markdown("""
|
95 |
This tool allows you to chat with software documentation. Here's how to use it:
|
96 |
+
1. Enter the URL of the documentation you want to chat about (optional if using an existing collection).
|
97 |
+
2. Enter the collection name for the vector store.
|
98 |
+
3. Click the "Ingest and Setup" button to crawl the documentation (if URL provided) and set up the query engine.
|
99 |
+
4. Once setup is complete, enter your query in the text box.
|
100 |
+
5. Click "Search" to get a response based on the documentation.
|
101 |
+
6. View your chat history in the sidebar.
|
102 |
""")
|
103 |
|
104 |
with streamlit_analytics.track():
|
105 |
# URL input for document ingestion
|
106 |
+
st.session_state['url'] = st.text_input("Enter URL to crawl and ingest documents (optional):", value=st.session_state['url'])
|
107 |
+
|
108 |
+
# Collection name input
|
109 |
+
st.session_state['collection_name'] = st.text_input("Enter collection name for vector store:", value=st.session_state['collection_name'])
|
110 |
|
111 |
# Combined Ingest and Setup button
|
112 |
if st.button("Ingest and Setup"):
|
113 |
+
with st.spinner("Setting up query engine..."):
|
114 |
+
embed_setup()
|
115 |
+
client = qdrant_setup()
|
116 |
+
llm = llm_setup()
|
117 |
+
vector_store = QdrantVectorStore(client=client, collection_name=st.session_state['collection_name'])
|
118 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
119 |
+
|
120 |
+
if st.session_state['url']:
|
121 |
+
st.session_state['documents'] = ingest_documents(st.session_state['url'])
|
122 |
+
st.session_state['index'] = VectorStoreIndex.from_documents(st.session_state['documents'], vector_store=vector_store, storage_context=storage_context)
|
123 |
+
st.success(f"Documents ingested from {st.session_state['url']} and query engine setup completed successfully!")
|
124 |
+
else:
|
125 |
+
st.session_state['index'] = VectorStoreIndex.from_vector_store(vector_store=vector_store, storage_context=storage_context)
|
126 |
+
st.success(f"Query engine setup completed successfully using existing collection: {st.session_state['collection_name']}")
|
127 |
+
|
128 |
+
st.session_state['setup_complete'] = True
|
129 |
|
130 |
# Query input
|
131 |
+
st.session_state['query'] = st.text_input("Enter your query:", value=st.session_state['query'])
|
132 |
|
133 |
# Search button
|
134 |
if st.button("Search"):
|
135 |
if not st.session_state['setup_complete']:
|
136 |
st.error("Please complete the setup first")
|
137 |
+
elif st.session_state['query']:
|
138 |
with st.spinner("Searching..."):
|
139 |
try:
|
140 |
chat_engine = query_index(st.session_state['index'])
|
141 |
+
response = chat_engine.chat(st.session_state['query'])
|
142 |
except Exception as e:
|
143 |
st.error(f"An error occurred: {str(e)}")
|
144 |
st.info("Retrying in 120 seconds...")
|
145 |
time.sleep(120)
|
146 |
try:
|
147 |
chat_engine = query_index(st.session_state['index'])
|
148 |
+
response = chat_engine.chat(st.session_state['query'])
|
149 |
except Exception as e:
|
150 |
st.error(f"Retry failed. Error: {str(e)}")
|
151 |
st.stop()
|
152 |
|
153 |
# Add the query and response to chat history
|
154 |
+
st.session_state['chat_history'].append(("User", st.session_state['query']))
|
155 |
st.session_state['chat_history'].append(("Assistant", str(response.response)))
|
156 |
|
157 |
# Display the most recent response prominently
|