Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| from salesforce_integration import fetch_poles | |
| # Title | |
| st.title("π‘ VIEP Smart Poles Dashboard") | |
| # Fetch data | |
| df = fetch_poles() | |
| # Sidebar Filters | |
| st.sidebar.header("π Filter Data") | |
| # Dynamic values from Salesforce data | |
| alert_levels = df["Alert_Level__c"].dropna().unique().tolist() | |
| sites = df["Site__c"].dropna().unique().tolist() | |
| camera_statuses = df["Camera_Status__c"].dropna().unique().tolist() | |
| selected_alert_levels = st.sidebar.multiselect("Alert Level", alert_levels, default=alert_levels) | |
| selected_camera_status = st.sidebar.selectbox("Camera Status", ["All"] + camera_statuses) | |
| # Initial filtering by alert level and camera status | |
| filtered_df = df[ | |
| (df["Alert_Level__c"].isin(selected_alert_levels)) | |
| ] | |
| if selected_camera_status != "All": | |
| filtered_df = filtered_df[filtered_df["Camera_Status__c"] == selected_camera_status] | |
| # Site filter logic (place here) | |
| site_options = ["All"] + df["Site__c"].dropna().unique().tolist() | |
| selected_site = st.sidebar.selectbox("Site", site_options, index=0) | |
| if selected_site != "All": | |
| filtered_df = filtered_df[filtered_df["Site__c"] == selected_site] | |
| # Site filter logic (place here) | |
| if selected_site != "All": | |
| filtered_df = filtered_df[filtered_df["Site__c"] == selected_site] | |
| # --- System Summary --- | |
| st.subheader("π System Summary") | |
| col1, col2, col3 = st.columns(3) | |
| col1.metric("Total Poles", len(filtered_df)) | |
| col2.metric("Red Alerts", len(filtered_df[filtered_df["Alert_Level__c"] == "Red"])) | |
| col3.metric("Offline Cameras", len(filtered_df[filtered_df["Camera_Status__c"] == "Offline"])) | |
| # --- Pole Table --- | |
| st.subheader("π Pole Table") | |
| st.dataframe(filtered_df, use_container_width=True) | |
| # --- Energy Generation Chart --- | |
| st.subheader("β Energy Generation (Solar vs Wind)") | |
| if not filtered_df.empty: | |
| energy_chart = px.bar( | |
| filtered_df, | |
| x="Name", | |
| y=["Solar_Generation__c", "Wind_Generation__c"], | |
| barmode="group", | |
| title="Solar vs Wind Energy Generation" | |
| ) | |
| st.plotly_chart(energy_chart, use_container_width=True) | |
| else: | |
| st.info("No data available for the selected filters.") | |
| # --- Alert Level Breakdown --- | |
| st.subheader("π¨ Alert Level Breakdown") | |
| if not filtered_df.empty: | |
| alert_counts = filtered_df["Alert_Level__c"].value_counts().reset_index() | |
| alert_counts.columns = ["Alert Level", "Count"] | |
| alert_pie = px.pie(alert_counts, values="Count", names="Alert Level", title="Alert Distribution") | |
| st.plotly_chart(alert_pie, use_container_width=True) | |
| else: | |
| st.info("No alerts to display.") | |
| # 5. Tilt vs Vibration Chart | |
| st.subheader("π Tilt vs Vibration") | |
| # Extract Tilt and Vibration from RFID_Tag__c | |
| filtered_df["Tilt"] = filtered_df["RFID_Tag__c"].str.extract(r'Tilt:(\d+\.?\d*)').astype(float) | |
| filtered_df["Vibration"] = filtered_df["RFID_Tag__c"].str.extract(r'Vib:(\d+\.?\d*)').astype(float) | |
| # Drop rows with no tilt or vibration data | |
| tilt_vib_df = filtered_df.dropna(subset=["Tilt", "Vibration"]) | |
| if not tilt_vib_df.empty: | |
| fig_tilt_vib = go.Figure() | |
| fig_tilt_vib.add_trace(go.Scatter( | |
| x=tilt_vib_df["Name"], | |
| y=tilt_vib_df["Tilt"], | |
| mode='lines+markers', | |
| name='Tilt' | |
| )) | |
| fig_tilt_vib.add_trace(go.Scatter( | |
| x=tilt_vib_df["Name"], | |
| y=tilt_vib_df["Vibration"], | |
| mode='lines+markers', | |
| name='Vibration' | |
| )) | |
| fig_tilt_vib.update_layout(title="Tilt vs Vibration by Pole", xaxis_title="Pole Name", yaxis_title="Value") | |
| st.plotly_chart(fig_tilt_vib, use_container_width=True) | |
| else: | |
| st.info("No Tilt or Vibration data available.") | |