Spaces:
Runtime error
Runtime error
Commit
·
bfca8e7
1
Parent(s):
83f6d3a
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import re
|
| 3 |
import os
|
| 4 |
import fitz
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
-
#dsad
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
| 9 |
model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
|
@@ -20,6 +20,9 @@ def generate_question_answer_pairs(pdf_file):
|
|
| 20 |
if pdf_file is None:
|
| 21 |
return "Please upload a PDF file"
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
pdf_text = extract_text_from_pdf(pdf_file.name)
|
| 24 |
|
| 25 |
sentences = re.split(r'(?<=[.!?])', pdf_text)
|
|
@@ -38,18 +41,22 @@ def generate_question_answer_pairs(pdf_file):
|
|
| 38 |
if len(qa_parts) >= 2:
|
| 39 |
question_part = qa_parts[0] + "?"
|
| 40 |
answer_part = qa_parts[1].strip()
|
|
|
|
|
|
|
| 41 |
result += f"Question: {question_part}\nAnswer: {answer_part}\n\n"
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
title = "Question-Answer Pairs Generation"
|
| 46 |
input_file = gr.File(label="Upload a PDF file")
|
|
|
|
| 47 |
output_text = gr.Textbox()
|
| 48 |
|
| 49 |
interface = gr.Interface(
|
| 50 |
fn=generate_question_answer_pairs,
|
| 51 |
inputs=input_file,
|
| 52 |
-
outputs=output_text,
|
| 53 |
title=title,
|
| 54 |
)
|
| 55 |
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
import re
|
| 4 |
import os
|
| 5 |
import fitz
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
| 9 |
model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
|
|
|
| 20 |
if pdf_file is None:
|
| 21 |
return "Please upload a PDF file"
|
| 22 |
|
| 23 |
+
d = {'Question':[],'Answer':[]}
|
| 24 |
+
df = pd.DataFrame(data=d)
|
| 25 |
+
|
| 26 |
pdf_text = extract_text_from_pdf(pdf_file.name)
|
| 27 |
|
| 28 |
sentences = re.split(r'(?<=[.!?])', pdf_text)
|
|
|
|
| 41 |
if len(qa_parts) >= 2:
|
| 42 |
question_part = qa_parts[0] + "?"
|
| 43 |
answer_part = qa_parts[1].strip()
|
| 44 |
+
new_data = {'Question': [question_part], 'Answer': [answer_part]}
|
| 45 |
+
df = pd.concat([df, pd.DataFrame(new_data)], ignore_index=True)
|
| 46 |
result += f"Question: {question_part}\nAnswer: {answer_part}\n\n"
|
| 47 |
+
|
| 48 |
+
df.to_csv("QAPairs.csv")
|
| 49 |
+
return result, "QAPairs.csv"
|
| 50 |
|
| 51 |
title = "Question-Answer Pairs Generation"
|
| 52 |
input_file = gr.File(label="Upload a PDF file")
|
| 53 |
+
output_file = gr.File(label="Download as csv")
|
| 54 |
output_text = gr.Textbox()
|
| 55 |
|
| 56 |
interface = gr.Interface(
|
| 57 |
fn=generate_question_answer_pairs,
|
| 58 |
inputs=input_file,
|
| 59 |
+
outputs=[output_text, output_file],
|
| 60 |
title=title,
|
| 61 |
)
|
| 62 |
interface.launch()
|