Spaces:
Running
Running
Update inference_2.py
Browse files- inference_2.py +48 -68
inference_2.py
CHANGED
|
@@ -1,21 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
-
import onnx
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
-
import
|
| 7 |
-
from models.TMC import ETMC
|
| 8 |
-
from models import image
|
| 9 |
from onnx2pytorch import ConvertModel
|
| 10 |
-
import
|
| 11 |
-
|
| 12 |
-
# Load ONNX model and convert to PyTorch
|
| 13 |
-
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
| 14 |
-
pytorch_model = ConvertModel(onnx_model)
|
| 15 |
|
|
|
|
| 16 |
torch.manual_seed(42)
|
| 17 |
|
| 18 |
-
# Audio
|
| 19 |
audio_args = {
|
| 20 |
'nb_samp': 64600,
|
| 21 |
'first_conv': 1024,
|
|
@@ -25,50 +19,45 @@ audio_args = {
|
|
| 25 |
'nb_fc_node': 1024,
|
| 26 |
'gru_node': 1024,
|
| 27 |
'nb_gru_layer': 3,
|
| 28 |
-
'nb_classes': 2
|
|
|
|
|
|
|
| 29 |
}
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
'pretrained_audio_encoder': False,
|
| 35 |
-
'freeze_audio_encoder': False,
|
| 36 |
-
'device': 'cpu'
|
| 37 |
-
}
|
| 38 |
-
audio_args_obj = types.SimpleNamespace(**audio_args_complete)
|
| 39 |
|
| 40 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
spec_model = image.RawNet(audio_args_obj)
|
| 42 |
-
spec_model_ckpt = torch.load('checkpoints/model.pth', map_location='cpu')
|
| 43 |
-
spec_model.load_state_dict(spec_model_ckpt['spec_encoder'], strict=True)
|
| 44 |
-
spec_model.eval()
|
| 45 |
|
| 46 |
-
|
| 47 |
-
img_model_ckpt = torch.load('checkpoints/model.pth', map_location='cpu')
|
| 48 |
-
img_model.load_state_dict(img_model_ckpt['rgb_encoder'], strict=True)
|
| 49 |
img_model.eval()
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
# Preprocessing functions
|
|
|
|
| 53 |
def preprocess_img(face):
|
| 54 |
face = face / 255.0
|
| 55 |
face = cv2.resize(face, (256, 256))
|
| 56 |
-
|
| 57 |
-
return
|
| 58 |
-
|
| 59 |
|
| 60 |
def preprocess_audio(audio_file):
|
| 61 |
-
|
| 62 |
-
return
|
| 63 |
-
|
| 64 |
|
| 65 |
def preprocess_video(input_video, n_frames=3):
|
| 66 |
v_cap = cv2.VideoCapture(input_video)
|
| 67 |
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 68 |
-
|
| 69 |
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 70 |
-
|
| 71 |
frames = []
|
|
|
|
| 72 |
for j in range(v_len):
|
| 73 |
success = v_cap.grab()
|
| 74 |
if j in sample:
|
|
@@ -81,52 +70,43 @@ def preprocess_video(input_video, n_frames=3):
|
|
| 81 |
v_cap.release()
|
| 82 |
return frames
|
| 83 |
|
| 84 |
-
|
| 85 |
# Prediction functions
|
|
|
|
| 86 |
def deepfakes_spec_predict(input_audio):
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
spec_grads_np = np.squeeze(spec_grads.detach().cpu().numpy())
|
| 91 |
|
| 92 |
if spec_grads_np[0] > 0.5:
|
| 93 |
-
|
| 94 |
else:
|
| 95 |
-
|
| 96 |
-
return text2
|
| 97 |
-
|
| 98 |
|
| 99 |
def deepfakes_image_predict(input_image):
|
| 100 |
-
|
| 101 |
-
img_grads = img_model(
|
| 102 |
-
img_grads_np = np.squeeze(img_grads.
|
| 103 |
|
| 104 |
if img_grads_np[0] > 0.5:
|
| 105 |
-
|
| 106 |
-
text2 = f"The image is REAL. \nConfidence score: {preds}%"
|
| 107 |
else:
|
| 108 |
-
|
| 109 |
-
text2 = f"The image is FAKE. \nConfidence score: {preds}%"
|
| 110 |
-
return text2
|
| 111 |
-
|
| 112 |
|
| 113 |
def deepfakes_video_predict(input_video):
|
| 114 |
-
|
| 115 |
-
|
| 116 |
|
| 117 |
-
for
|
| 118 |
-
img_grads = img_model(
|
| 119 |
-
img_grads_np = np.squeeze(img_grads.
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
|
| 126 |
-
if
|
| 127 |
-
|
| 128 |
-
text2 = f"The video is REAL. \nConfidence score: {preds}%"
|
| 129 |
else:
|
| 130 |
-
|
| 131 |
-
text2 = f"The video is FAKE. \nConfidence score: {preds}%"
|
| 132 |
-
return text2
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
+
from onnx import load as onnx_load
|
|
|
|
|
|
|
| 6 |
from onnx2pytorch import ConvertModel
|
| 7 |
+
from models import image # Your RawNet audio model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Set seed for reproducibility
|
| 10 |
torch.manual_seed(42)
|
| 11 |
|
| 12 |
+
# Audio args for RawNet
|
| 13 |
audio_args = {
|
| 14 |
'nb_samp': 64600,
|
| 15 |
'first_conv': 1024,
|
|
|
|
| 19 |
'nb_fc_node': 1024,
|
| 20 |
'gru_node': 1024,
|
| 21 |
'nb_gru_layer': 3,
|
| 22 |
+
'nb_classes': 2,
|
| 23 |
+
'device': 'cpu',
|
| 24 |
+
'pretrained_audio_encoder': False
|
| 25 |
}
|
| 26 |
|
| 27 |
+
# Convert audio_args dict to a namespace object
|
| 28 |
+
from types import SimpleNamespace
|
| 29 |
+
audio_args_obj = SimpleNamespace(**audio_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Load ONNX → PyTorch model for images
|
| 32 |
+
onnx_model = onnx_load("checkpoints/efficientnet.onnx")
|
| 33 |
+
img_model = ConvertModel(onnx_model) # do NOT use strict=True (not supported)
|
| 34 |
+
|
| 35 |
+
# Load Audio model
|
| 36 |
spec_model = image.RawNet(audio_args_obj)
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Ensure models are in eval mode
|
|
|
|
|
|
|
| 39 |
img_model.eval()
|
| 40 |
+
spec_model.eval()
|
| 41 |
|
| 42 |
+
# -------------------------
|
| 43 |
# Preprocessing functions
|
| 44 |
+
# -------------------------
|
| 45 |
def preprocess_img(face):
|
| 46 |
face = face / 255.0
|
| 47 |
face = cv2.resize(face, (256, 256))
|
| 48 |
+
face_tensor = torch.unsqueeze(torch.Tensor(face), dim=0)
|
| 49 |
+
return face_tensor
|
|
|
|
| 50 |
|
| 51 |
def preprocess_audio(audio_file):
|
| 52 |
+
audio_tensor = torch.unsqueeze(torch.Tensor(audio_file), dim=0)
|
| 53 |
+
return audio_tensor
|
|
|
|
| 54 |
|
| 55 |
def preprocess_video(input_video, n_frames=3):
|
| 56 |
v_cap = cv2.VideoCapture(input_video)
|
| 57 |
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
| 58 |
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
|
|
|
| 59 |
frames = []
|
| 60 |
+
|
| 61 |
for j in range(v_len):
|
| 62 |
success = v_cap.grab()
|
| 63 |
if j in sample:
|
|
|
|
| 70 |
v_cap.release()
|
| 71 |
return frames
|
| 72 |
|
| 73 |
+
# -------------------------
|
| 74 |
# Prediction functions
|
| 75 |
+
# -------------------------
|
| 76 |
def deepfakes_spec_predict(input_audio):
|
| 77 |
+
audio_tensor = preprocess_audio(input_audio)
|
| 78 |
+
spec_grads = spec_model.forward(audio_tensor)
|
| 79 |
+
spec_grads_np = np.squeeze(spec_grads.cpu().detach().numpy())
|
|
|
|
| 80 |
|
| 81 |
if spec_grads_np[0] > 0.5:
|
| 82 |
+
return "The audio is REAL."
|
| 83 |
else:
|
| 84 |
+
return "The audio is FAKE."
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def deepfakes_image_predict(input_image):
|
| 87 |
+
face_tensor = preprocess_img(input_image)
|
| 88 |
+
img_grads = img_model.forward(face_tensor)
|
| 89 |
+
img_grads_np = np.squeeze(img_grads.cpu().detach().numpy())
|
| 90 |
|
| 91 |
if img_grads_np[0] > 0.5:
|
| 92 |
+
return f"The image is REAL. Confidence score: {round(img_grads_np[0]*100,2)}%"
|
|
|
|
| 93 |
else:
|
| 94 |
+
return f"The image is FAKE. Confidence score: {round(img_grads_np[1]*100,2)}%"
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
def deepfakes_video_predict(input_video):
|
| 97 |
+
frames = preprocess_video(input_video)
|
| 98 |
+
real_list, fake_list = [], []
|
| 99 |
|
| 100 |
+
for frame in frames:
|
| 101 |
+
img_grads = img_model.forward(frame)
|
| 102 |
+
img_grads_np = np.squeeze(img_grads.cpu().detach().numpy())
|
| 103 |
+
real_list.append(img_grads_np[0])
|
| 104 |
+
fake_list.append(img_grads_np[1])
|
| 105 |
|
| 106 |
+
real_mean = np.mean(real_list)
|
| 107 |
+
fake_mean = np.mean(fake_list)
|
| 108 |
|
| 109 |
+
if real_mean > 0.5:
|
| 110 |
+
return f"The video is REAL. Confidence: {round(real_mean*100,2)}%"
|
|
|
|
| 111 |
else:
|
| 112 |
+
return f"The video is FAKE. Confidence: {round(fake_mean*100,2)}%"
|
|
|
|
|
|