Praneeth383 commited on
Commit
4184a3b
1 Parent(s): 7afdb25

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def house_price_prediction(ft1,ft2,ft3,ft4,ft5,ft6,ft7,ft8):
2
+ # output=1
3
+ import pandas as pd
4
+ housing=pd.read_csv("/content/drive/MyDrive/Colab Notebooks/lab 03/housing.csv")
5
+
6
+ ## 1. split data to get train and test set
7
+ from sklearn.model_selection import train_test_split
8
+ train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
9
+
10
+ ## 2. clean the missing values
11
+ train_set_clean = train_set.dropna(subset=["total_bedrooms"])
12
+ train_set_clean
13
+
14
+ ## 2. derive training features and training labels
15
+ train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
16
+ train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
17
+
18
+
19
+ ## 4. scale the numeric features in training set
20
+ from sklearn.preprocessing import MinMaxScaler
21
+ scaler = MinMaxScaler() ## define the transformer
22
+ scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
23
+
24
+ train_features_normalized = scaler.transform(train_features)
25
+ train_features_normalized
26
+ #model training
27
+ from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
28
+ lin_reg = LinearRegression() ## Initialize the class
29
+ lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
30
+ #model prediction
31
+ import numpy as np
32
+ test_features=np.array([[ft1,ft2,ft3,ft4,ft5,ft6,ft7,ft8]])
33
+ training_predictions = lin_reg.predict(test_features)
34
+ return training_predictions
35
+
36
+ #return output
37
+
38
+
39
+ import gradio as gr
40
+
41
+ ip1 = gr.inputs.Slider(-124.35, -114.35, step=5, label = "Longitude")
42
+ ip2 = gr.inputs.Slider(32,41, step=5, label = "Latitude")
43
+ ip3 = gr.inputs.Slider(1,52, step=5, label = "Housing_median_age (Year)")
44
+ ip4 = gr.inputs.Slider(1,39996, step=5, label = "Total_rooms")
45
+ ip5 = gr.inputs.Slider(1,6441, step=5, label = "Total_bedrooms")
46
+ ip6 = gr.inputs.Slider(3,35678, step=5, label = "Population")
47
+ ip7 = gr.inputs.Slider(1,6081, step=5, label = "Households")
48
+ ip8 = gr.inputs.Slider(0,15, step=5, label = "Median_income")
49
+ op_module = gr.outputs.Textbox(label = "Output")
50
+
51
+ gr.Interface(fn=house_price_prediction,
52
+ inputs=[ip1, ip2, ip3,
53
+ ip4, ip5, ip6,
54
+ ip7,ip8],
55
+ outputs=[op_module]
56
+ ).launch(debug= True)
57
+ op_module = gr.outputs.Textbox(label = "Output")